You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

AD_dsxw_test68.py 4.7 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134
  1. _base_ = [
  2. '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
  3. ]
  4. norm_cfg = dict(type='SyncBN', requires_grad=True)
  5. model = dict(
  6. type='ATSS',
  7. backbone=dict(
  8. type='PyramidVisionTransformerV2',
  9. mlp_ratios=(4, 4, 4, 4),
  10. embed_dims=64,
  11. num_layers=[3, 4, 18, 3],
  12. init_cfg=dict(checkpoint='https://github.com/whai362/PVT/'
  13. 'releases/download/v2/pvt_v2_b3.pth')),
  14. neck=dict(
  15. type='FPN',
  16. in_channels=[64, 128, 320, 512],
  17. out_channels=256,
  18. start_level=1,
  19. add_extra_convs='on_output',
  20. num_outs=5),
  21. bbox_head=dict(
  22. type='ATSSHead',
  23. num_classes=11,
  24. in_channels=256,
  25. stacked_convs=4,
  26. feat_channels=256,
  27. anchor_generator=dict(
  28. type='AnchorGenerator',
  29. ratios=[1.0],
  30. octave_base_scale=8,
  31. scales_per_octave=1,
  32. strides=[8, 16, 32, 64, 128]),
  33. bbox_coder=dict(
  34. type='DeltaXYWHBBoxCoder',
  35. target_means=[.0, .0, .0, .0],
  36. target_stds=[0.1, 0.1, 0.2, 0.2]),
  37. loss_cls=dict(
  38. type='FocalLoss',
  39. use_sigmoid=True,
  40. gamma=2.0,
  41. alpha=0.25,
  42. loss_weight=1.0),
  43. loss_bbox=dict(type='GIoULoss', loss_weight=2.0),
  44. loss_centerness=dict(
  45. type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
  46. # training and testing settings
  47. train_cfg=dict(
  48. assigner=dict(type='ATSSAssigner', topk=9),
  49. allowed_border=-1,
  50. pos_weight=-1,
  51. debug=False),
  52. test_cfg=dict(
  53. nms_pre=1000,
  54. min_bbox_size=0,
  55. score_thr=0.05,
  56. nms=dict(type='nms', iou_threshold=0.6),
  57. max_per_img=100))
  58. dataset_type = 'CocoDataset'
  59. classes = ('yiwei','loujian','celi','libei','fantie','lianxi','duojian','shunjian','shaoxi','jiahan','yiwu')
  60. img_norm_cfg = dict(
  61. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  62. train_pipeline = [
  63. dict(type='LoadImageFromFile'),
  64. dict(type='LoadAnnotations', with_bbox=True),
  65. dict(
  66. type='Resize',
  67. img_scale=[(400, 400), (500, 500)],
  68. multiscale_mode='value',
  69. keep_ratio=True),
  70. dict(type='RandomFlip', flip_ratio=[0.2,0.2,0.2], direction=['horizontal', 'vertical', 'diagonal']),
  71. dict(type='BrightnessTransform', level=5, prob=0.5),
  72. dict(type='ContrastTransform', level=5, prob=0.5),
  73. dict(type='RandomShift', shift_ratio=0.5),
  74. dict(type='MinIoURandomCrop', min_ious=(0.5, 0.7, 0.9), min_crop_size=0.8),
  75. dict(type='Normalize', **img_norm_cfg),
  76. dict(type='Pad', size_divisor=32),
  77. dict(type='DefaultFormatBundle'),
  78. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
  79. ]
  80. test_pipeline = [
  81. dict(type='LoadImageFromFile'),
  82. dict(
  83. type='MultiScaleFlipAug',
  84. img_scale=[(400, 400)],
  85. flip=False,
  86. transforms=[
  87. dict(type='Resize', keep_ratio=True),
  88. dict(type='RandomFlip'),
  89. dict(type='Normalize', **img_norm_cfg),
  90. dict(type='Pad', size_divisor=32),
  91. dict(type='ImageToTensor', keys=['img']),
  92. dict(type='Collect', keys=['img']),
  93. ])
  94. ]
  95. data = dict(
  96. samples_per_gpu=6,
  97. workers_per_gpu=8,
  98. train=dict(
  99. type=dataset_type,
  100. img_prefix='/home/shanwei-luo/userdata/datasets/PCBA_dataset_v15/dsxw_train/images/',
  101. classes=classes,
  102. ann_file='/home/shanwei-luo/userdata/datasets/PCBA_dataset_v15/dsxw_train/annotations/train.json',
  103. pipeline=train_pipeline),
  104. val=dict(
  105. type=dataset_type,
  106. img_prefix='/home/shanwei-luo/userdata/datasets/PCBA_dataset_v15/dsxw_test/images/',
  107. classes=classes,
  108. ann_file='/home/shanwei-luo/userdata/datasets/PCBA_dataset_v15/dsxw_test/annotations/test.json',
  109. pipeline=test_pipeline),
  110. test=dict(
  111. type=dataset_type,
  112. img_prefix='/home/shanwei-luo/userdata/datasets/PCBA_dataset_v15/dsxw_test/images/',
  113. classes=classes,
  114. ann_file='/home/shanwei-luo/userdata/datasets/PCBA_dataset_v15/dsxw_test/annotations/test.json',
  115. pipeline=test_pipeline))
  116. # optimizer
  117. optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
  118. optimizer_config = dict(grad_clip=None)
  119. # learning policy
  120. lr_config = dict(
  121. policy='CosineAnnealing',
  122. warmup='linear',
  123. warmup_iters=5000,
  124. warmup_ratio=1.0 / 10,
  125. min_lr_ratio=1e-5)
  126. runner = dict(type='EpochBasedRunner', max_epochs=40)
  127. evaluation = dict(interval=2, metric='bbox')
  128. checkpoint_config = dict(interval=2)

No Description

Contributors (1)