You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

AD_dsxw_test56.py 4.7 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137
  1. _base_ = [
  2. '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
  3. ]
  4. model = dict(
  5. type='ATSS',
  6. backbone=dict(
  7. type='ResNeXt',
  8. depth=101,
  9. groups=64,
  10. base_width=4,
  11. num_stages=4,
  12. out_indices=(0, 1, 2, 3),
  13. frozen_stages=1,
  14. norm_cfg=dict(type='BN', requires_grad=True),
  15. style='pytorch',
  16. init_cfg=dict(
  17. type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')),
  18. neck=dict(
  19. type='FPN',
  20. in_channels=[256, 512, 1024, 2048],
  21. out_channels=256,
  22. start_level=1,
  23. add_extra_convs='on_output',
  24. num_outs=5),
  25. bbox_head=dict(
  26. type='ATSSHead',
  27. num_classes=11,
  28. in_channels=256,
  29. stacked_convs=4,
  30. feat_channels=256,
  31. anchor_generator=dict(
  32. type='AnchorGenerator',
  33. ratios=[1.0],
  34. octave_base_scale=8,
  35. scales_per_octave=1,
  36. strides=[8, 16, 32, 64, 128]),
  37. bbox_coder=dict(
  38. type='DeltaXYWHBBoxCoder',
  39. target_means=[.0, .0, .0, .0],
  40. target_stds=[0.1, 0.1, 0.2, 0.2]),
  41. loss_cls=dict(
  42. type='FocalLoss',
  43. use_sigmoid=True,
  44. gamma=2.0,
  45. alpha=0.25,
  46. loss_weight=1.0),
  47. loss_bbox=dict(type='GIoULoss', loss_weight=2.0),
  48. loss_centerness=dict(
  49. type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
  50. # training and testing settings
  51. train_cfg=dict(
  52. assigner=dict(type='ATSSAssigner', topk=9),
  53. allowed_border=-1,
  54. pos_weight=-1,
  55. debug=False),
  56. test_cfg=dict(
  57. nms_pre=1000,
  58. min_bbox_size=0,
  59. score_thr=0.05,
  60. nms=dict(type='nms', iou_threshold=0.6),
  61. max_per_img=100))
  62. dataset_type = 'CocoDataset'
  63. classes = ('yiwei','loujian','celi','libei','fantie','lianxi','duojian','shunjian','shaoxi','jiahan','yiwu')
  64. img_norm_cfg = dict(
  65. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  66. train_pipeline = [
  67. dict(type='LoadImageFromFile'),
  68. dict(type='LoadAnnotations', with_bbox=True),
  69. dict(
  70. type='Resize',
  71. img_scale=[(400, 400), (500, 500)],
  72. multiscale_mode='value',
  73. keep_ratio=True),
  74. dict(type='RandomFlip', flip_ratio=[0.2,0.2,0.2], direction=['horizontal', 'vertical', 'diagonal']),
  75. dict(type='BrightnessTransform', level=5, prob=0.5),
  76. dict(type='ContrastTransform', level=5, prob=0.5),
  77. dict(type='RandomShift', shift_ratio=0.5),
  78. dict(type='MinIoURandomCrop', min_ious=(0.5, 0.7, 0.9), min_crop_size=0.8),
  79. dict(type='Normalize', **img_norm_cfg),
  80. dict(type='Pad', size_divisor=32),
  81. dict(type='DefaultFormatBundle'),
  82. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
  83. ]
  84. test_pipeline = [
  85. dict(type='LoadImageFromFile'),
  86. dict(
  87. type='MultiScaleFlipAug',
  88. img_scale=[(400, 400)],
  89. flip=False,
  90. transforms=[
  91. dict(type='Resize', keep_ratio=True),
  92. dict(type='RandomFlip'),
  93. dict(type='Normalize', **img_norm_cfg),
  94. dict(type='Pad', size_divisor=32),
  95. dict(type='ImageToTensor', keys=['img']),
  96. dict(type='Collect', keys=['img']),
  97. ])
  98. ]
  99. data = dict(
  100. samples_per_gpu=16,
  101. workers_per_gpu=8,
  102. train=dict(
  103. type=dataset_type,
  104. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v11/dsxw_train/images/',
  105. classes=classes,
  106. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v11/dsxw_train/annotations/train.json',
  107. pipeline=train_pipeline),
  108. val=dict(
  109. type=dataset_type,
  110. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v11/dsxw_test/images/',
  111. classes=classes,
  112. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v11/dsxw_test/annotations/test.json',
  113. pipeline=test_pipeline),
  114. test=dict(
  115. type=dataset_type,
  116. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v11/dsxw_test/images/',
  117. classes=classes,
  118. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v11/dsxw_test/annotations/test.json',
  119. pipeline=test_pipeline))
  120. # optimizer
  121. optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
  122. optimizer_config = dict(grad_clip=None)
  123. # learning policy
  124. lr_config = dict(
  125. policy='CosineAnnealing',
  126. warmup='linear',
  127. warmup_iters=5000,
  128. warmup_ratio=1.0 / 10,
  129. min_lr_ratio=1e-5)
  130. runner = dict(type='EpochBasedRunner', max_epochs=60)
  131. evaluation = dict(interval=5, metric='bbox')

No Description

Contributors (1)