You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

AD_dsxw_test47.py 5.8 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159
  1. _base_ = '../cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco.py'
  2. norm_cfg = dict(type='SyncBN', requires_grad=True)
  3. model = dict(
  4. backbone=dict(
  5. norm_cfg=norm_cfg,
  6. dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
  7. stage_with_dcn=(False, True, True, True)),
  8. neck=dict(
  9. type='FPN_CARAFE',
  10. in_channels=[256, 512, 1024, 2048],
  11. out_channels=256,
  12. num_outs=5,
  13. start_level=0,
  14. end_level=-1,
  15. norm_cfg=None,
  16. act_cfg=None,
  17. order=('conv', 'norm', 'act'),
  18. upsample_cfg=dict(
  19. type='carafe',
  20. up_kernel=5,
  21. up_group=1,
  22. encoder_kernel=3,
  23. encoder_dilation=1,
  24. compressed_channels=64)),
  25. roi_head=dict(
  26. bbox_head=[
  27. dict(
  28. type='Shared2FCBBoxHead',
  29. in_channels=256,
  30. fc_out_channels=1024,
  31. roi_feat_size=7,
  32. num_classes=11,
  33. bbox_coder=dict(
  34. type='DeltaXYWHBBoxCoder',
  35. target_means=[0., 0., 0., 0.],
  36. target_stds=[0.1, 0.1, 0.2, 0.2]),
  37. reg_class_agnostic=True,
  38. loss_cls=dict(
  39. type='FocalLoss',
  40. use_sigmoid=True,
  41. gamma=2.0,
  42. alpha=0.25,
  43. loss_weight=1.0),
  44. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  45. loss_weight=1.0)),
  46. dict(
  47. type='Shared2FCBBoxHead',
  48. in_channels=256,
  49. fc_out_channels=1024,
  50. roi_feat_size=7,
  51. num_classes=11,
  52. bbox_coder=dict(
  53. type='DeltaXYWHBBoxCoder',
  54. target_means=[0., 0., 0., 0.],
  55. target_stds=[0.05, 0.05, 0.1, 0.1]),
  56. reg_class_agnostic=True,
  57. loss_cls=dict(
  58. type='FocalLoss',
  59. use_sigmoid=True,
  60. gamma=2.0,
  61. alpha=0.25,
  62. loss_weight=1.0),
  63. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  64. loss_weight=1.0)),
  65. dict(
  66. type='Shared2FCBBoxHead',
  67. in_channels=256,
  68. fc_out_channels=1024,
  69. roi_feat_size=7,
  70. num_classes=11,
  71. bbox_coder=dict(
  72. type='DeltaXYWHBBoxCoder',
  73. target_means=[0., 0., 0., 0.],
  74. target_stds=[0.033, 0.033, 0.067, 0.067]),
  75. reg_class_agnostic=True,
  76. loss_cls=dict(
  77. type='FocalLoss',
  78. use_sigmoid=True,
  79. gamma=2.0,
  80. alpha=0.25,
  81. loss_weight=1.0),
  82. loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
  83. ]))
  84. dataset_type = 'CocoDataset'
  85. classes = ('yiwei','loujian','celi','libei','fantie','lianxi','duojian','shunjian','shaoxi','jiahan','yiwu')
  86. img_norm_cfg = dict(
  87. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  88. train_pipeline = [
  89. dict(type='LoadImageFromFile'),
  90. dict(type='LoadAnnotations', with_bbox=True),
  91. dict(
  92. type='Resize',
  93. img_scale=[(400, 400), (500, 500)],
  94. multiscale_mode='value',
  95. keep_ratio=True),
  96. dict(type='RandomFlip', flip_ratio=[0.2,0.2,0.2], direction=['horizontal', 'vertical', 'diagonal']),
  97. dict(type='BrightnessTransform', level=5, prob=0.5),
  98. dict(type='ContrastTransform', level=5, prob=0.5),
  99. dict(type='RandomShift', shift_ratio=0.5),
  100. dict(type='MinIoURandomCrop', min_ious=(0.5, 0.7, 0.9), min_crop_size=0.8),
  101. dict(type='Normalize', **img_norm_cfg),
  102. dict(type='Pad', size_divisor=32),
  103. dict(type='DefaultFormatBundle'),
  104. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
  105. ]
  106. test_pipeline = [
  107. dict(type='LoadImageFromFile'),
  108. dict(
  109. type='MultiScaleFlipAug',
  110. img_scale=[(400, 400)],
  111. flip=False,
  112. transforms=[
  113. dict(type='Resize', keep_ratio=True),
  114. dict(type='RandomFlip'),
  115. dict(type='Normalize', **img_norm_cfg),
  116. dict(type='Pad', size_divisor=32),
  117. dict(type='ImageToTensor', keys=['img']),
  118. dict(type='Collect', keys=['img']),
  119. ])
  120. ]
  121. data = dict(
  122. samples_per_gpu=16,
  123. workers_per_gpu=8,
  124. train=dict(
  125. type=dataset_type,
  126. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v8/dsxw_train/images/',
  127. classes=classes,
  128. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v8/dsxw_train/annotations/train.json',
  129. pipeline=train_pipeline),
  130. val=dict(
  131. type=dataset_type,
  132. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v8/dsxw_test/images/',
  133. classes=classes,
  134. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v8/dsxw_test/annotations/test.json',
  135. pipeline=test_pipeline),
  136. test=dict(
  137. type=dataset_type,
  138. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v8/dsxw_test/images/',
  139. classes=classes,
  140. ann_file='/home/shanwei-luo/userdata/datasetsdsxw_dataset_v8/dsxw_test/annotations/test.json',
  141. pipeline=test_pipeline))
  142. # optimizer
  143. optimizer = dict(type='SGD', lr=0.03, momentum=0.9, weight_decay=0.0001)
  144. optimizer_config = dict(grad_clip=None)
  145. # learning policy
  146. lr_config = dict(
  147. policy='CosineAnnealing',
  148. warmup='linear',
  149. warmup_iters=2000,
  150. warmup_ratio=1.0 / 10,
  151. min_lr_ratio=1e-5)
  152. runner = dict(type='EpochBasedRunner', max_epochs=60)
  153. evaluation = dict(interval=5, metric='bbox')

No Description

Contributors (1)