You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

AD_dsxw_test42.py 6.1 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169
  1. _base_ = '../cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco.py'
  2. norm_cfg = dict(type='SyncBN', requires_grad=True)
  3. model = dict(
  4. backbone=dict(
  5. type='ResNeSt',
  6. stem_channels=128,
  7. depth=101,
  8. radix=2,
  9. reduction_factor=4,
  10. avg_down_stride=True,
  11. num_stages=4,
  12. out_indices=(0, 1, 2, 3),
  13. frozen_stages=1,
  14. norm_cfg=norm_cfg,
  15. norm_eval=False,
  16. style='pytorch',
  17. init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://resnest101')),
  18. neck=dict(
  19. type='FPN_CARAFE',
  20. in_channels=[256, 512, 1024, 2048],
  21. out_channels=256,
  22. num_outs=5,
  23. start_level=0,
  24. end_level=-1,
  25. norm_cfg=None,
  26. act_cfg=None,
  27. order=('conv', 'norm', 'act'),
  28. upsample_cfg=dict(
  29. type='carafe',
  30. up_kernel=5,
  31. up_group=1,
  32. encoder_kernel=3,
  33. encoder_dilation=1,
  34. compressed_channels=64)),
  35. roi_head=dict(
  36. bbox_head=[
  37. dict(
  38. type='Shared2FCBBoxHead',
  39. in_channels=256,
  40. fc_out_channels=1024,
  41. roi_feat_size=7,
  42. num_classes=11,
  43. bbox_coder=dict(
  44. type='DeltaXYWHBBoxCoder',
  45. target_means=[0., 0., 0., 0.],
  46. target_stds=[0.1, 0.1, 0.2, 0.2]),
  47. reg_class_agnostic=True,
  48. loss_cls=dict(
  49. type='FocalLoss',
  50. use_sigmoid=True,
  51. gamma=2.0,
  52. alpha=0.25,
  53. loss_weight=1.0),
  54. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  55. loss_weight=1.0)),
  56. dict(
  57. type='Shared2FCBBoxHead',
  58. in_channels=256,
  59. fc_out_channels=1024,
  60. roi_feat_size=7,
  61. num_classes=11,
  62. bbox_coder=dict(
  63. type='DeltaXYWHBBoxCoder',
  64. target_means=[0., 0., 0., 0.],
  65. target_stds=[0.05, 0.05, 0.1, 0.1]),
  66. reg_class_agnostic=True,
  67. loss_cls=dict(
  68. type='FocalLoss',
  69. use_sigmoid=True,
  70. gamma=2.0,
  71. alpha=0.25,
  72. loss_weight=1.0),
  73. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  74. loss_weight=1.0)),
  75. dict(
  76. type='Shared2FCBBoxHead',
  77. in_channels=256,
  78. fc_out_channels=1024,
  79. roi_feat_size=7,
  80. num_classes=11,
  81. bbox_coder=dict(
  82. type='DeltaXYWHBBoxCoder',
  83. target_means=[0., 0., 0., 0.],
  84. target_stds=[0.033, 0.033, 0.067, 0.067]),
  85. reg_class_agnostic=True,
  86. loss_cls=dict(
  87. type='FocalLoss',
  88. use_sigmoid=True,
  89. gamma=2.0,
  90. alpha=0.25,
  91. loss_weight=1.0),
  92. loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
  93. ]))
  94. dataset_type = 'CocoDataset'
  95. classes = ('yiwei','loujian','celi','libei','fantie','lianxi','duojian','shunjian','shaoxi','jiahan','yiwu')
  96. img_norm_cfg = dict(
  97. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  98. train_pipeline = [
  99. dict(type='LoadImageFromFile'),
  100. dict(type='LoadAnnotations', with_bbox=True),
  101. dict(
  102. type='Resize',
  103. img_scale=[(400, 400), (500, 500)],
  104. multiscale_mode='value',
  105. keep_ratio=True),
  106. dict(type='RandomFlip', flip_ratio=[0.2,0.2,0.2], direction=['horizontal', 'vertical', 'diagonal']),
  107. dict(type='BrightnessTransform', level=5, prob=0.5),
  108. dict(type='ContrastTransform', level=5, prob=0.5),
  109. dict(type='RandomShift', shift_ratio=0.5),
  110. dict(type='MinIoURandomCrop', min_ious=(0.5, 0.7, 0.9), min_crop_size=0.8),
  111. dict(type='Normalize', **img_norm_cfg),
  112. dict(type='Pad', size_divisor=32),
  113. dict(type='DefaultFormatBundle'),
  114. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
  115. ]
  116. test_pipeline = [
  117. dict(type='LoadImageFromFile'),
  118. dict(
  119. type='MultiScaleFlipAug',
  120. img_scale=[(400, 400)],
  121. flip=False,
  122. transforms=[
  123. dict(type='Resize', keep_ratio=True),
  124. dict(type='RandomFlip'),
  125. dict(type='Normalize', **img_norm_cfg),
  126. dict(type='Pad', size_divisor=32),
  127. dict(type='ImageToTensor', keys=['img']),
  128. dict(type='Collect', keys=['img']),
  129. ])
  130. ]
  131. data = dict(
  132. samples_per_gpu=8,
  133. workers_per_gpu=8,
  134. train=dict(
  135. type=dataset_type,
  136. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v8/dsxw_train/images/',
  137. classes=classes,
  138. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v8/dsxw_train/annotations/train.json',
  139. pipeline=train_pipeline),
  140. val=dict(
  141. type=dataset_type,
  142. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v8/dsxw_test/images/',
  143. classes=classes,
  144. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v8/dsxw_test/annotations/test.json',
  145. pipeline=test_pipeline),
  146. test=dict(
  147. type=dataset_type,
  148. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v8/dsxw_test/images/',
  149. classes=classes,
  150. ann_file='/home/shanwei-luo/userdata/datasetsdsxw_dataset_v8/dsxw_test/annotations/test.json',
  151. pipeline=test_pipeline))
  152. # optimizer
  153. optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
  154. optimizer_config = dict(grad_clip=None)
  155. # learning policy
  156. lr_config = dict(
  157. policy='CosineAnnealing',
  158. warmup='linear',
  159. warmup_iters=5000,
  160. warmup_ratio=1.0 / 10,
  161. min_lr_ratio=1e-5)
  162. runner = dict(type='EpochBasedRunner', max_epochs=60)
  163. evaluation = dict(interval=5, metric='bbox')

No Description

Contributors (1)