You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

AD_dsxw_test21.py 5.8 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155
  1. _base_ = '../cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco.py'
  2. pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth'
  3. model = dict(
  4. backbone=dict(
  5. _delete_=True,
  6. type='SwinTransformer',
  7. embed_dims=96,
  8. depths=[2, 2, 18, 2],
  9. num_heads=[3, 6, 12, 24],
  10. window_size=7,
  11. mlp_ratio=4,
  12. qkv_bias=True,
  13. qk_scale=None,
  14. drop_rate=0.,
  15. attn_drop_rate=0.,
  16. drop_path_rate=0.2,
  17. patch_norm=True,
  18. out_indices=(0, 1, 2, 3),
  19. with_cp=False,
  20. convert_weights=True,
  21. init_cfg=dict(type='Pretrained', checkpoint=pretrained)),
  22. neck=dict(
  23. type='FPN',#FPN PAFPN
  24. in_channels=[96, 192, 384, 768],
  25. out_channels=256,
  26. num_outs=5),
  27. roi_head=dict(
  28. bbox_head=[
  29. dict(
  30. type='Shared2FCBBoxHead',
  31. in_channels=256,
  32. fc_out_channels=1024,
  33. roi_feat_size=7,
  34. num_classes=11,
  35. bbox_coder=dict(
  36. type='DeltaXYWHBBoxCoder',
  37. target_means=[0., 0., 0., 0.],
  38. target_stds=[0.1, 0.1, 0.2, 0.2]),
  39. reg_class_agnostic=True,
  40. loss_cls=dict(
  41. type='CrossEntropyLoss',
  42. use_sigmoid=False,
  43. loss_weight=1.0),
  44. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  45. loss_weight=1.0)),
  46. dict(
  47. type='Shared2FCBBoxHead',
  48. in_channels=256,
  49. fc_out_channels=1024,
  50. roi_feat_size=7,
  51. num_classes=11,
  52. bbox_coder=dict(
  53. type='DeltaXYWHBBoxCoder',
  54. target_means=[0., 0., 0., 0.],
  55. target_stds=[0.05, 0.05, 0.1, 0.1]),
  56. reg_class_agnostic=True,
  57. loss_cls=dict(
  58. type='CrossEntropyLoss',
  59. use_sigmoid=False,
  60. loss_weight=1.0),
  61. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  62. loss_weight=1.0)),
  63. dict(
  64. type='Shared2FCBBoxHead',
  65. in_channels=256,
  66. fc_out_channels=1024,
  67. roi_feat_size=7,
  68. num_classes=11,
  69. bbox_coder=dict(
  70. type='DeltaXYWHBBoxCoder',
  71. target_means=[0., 0., 0., 0.],
  72. target_stds=[0.033, 0.033, 0.067, 0.067]),
  73. reg_class_agnostic=True,
  74. loss_cls=dict(
  75. type='CrossEntropyLoss',
  76. use_sigmoid=False,
  77. loss_weight=1.0),
  78. loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
  79. ]))
  80. dataset_type = 'CocoDataset'
  81. classes = ('yiwei','loujian','celi','libei','fantie','lianxi','duojian','shunjian','shaoxi','jiahan','yiwu')
  82. img_norm_cfg = dict(
  83. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  84. train_pipeline = [
  85. dict(type='LoadImageFromFile'),
  86. dict(type='LoadAnnotations', with_bbox=True),
  87. dict(
  88. type='Resize',
  89. img_scale=[(400, 300), (500, 400)],
  90. multiscale_mode='value',
  91. keep_ratio=True),
  92. dict(type='RandomFlip', flip_ratio=[0.2,0.2,0.2], direction=['horizontal', 'vertical', 'diagonal']),
  93. dict(type='BrightnessTransform', level=5, prob=0.5),
  94. dict(type='ContrastTransform', level=5, prob=0.5),
  95. dict(type='RandomShift', shift_ratio=0.5),
  96. dict(type='MinIoURandomCrop', min_ious=(0.5, 0.7, 0.9), min_crop_size=0.8),
  97. dict(type='Normalize', **img_norm_cfg),
  98. dict(type='Pad', size_divisor=32),
  99. dict(type='DefaultFormatBundle'),
  100. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
  101. ]
  102. test_pipeline = [
  103. dict(type='LoadImageFromFile'),
  104. dict(
  105. type='MultiScaleFlipAug',
  106. img_scale=[(400, 300), (500, 400)],
  107. flip=True,
  108. transforms=[
  109. dict(type='Resize', keep_ratio=True),
  110. dict(type='RandomFlip'),
  111. dict(type='Normalize', **img_norm_cfg),
  112. dict(type='Pad', size_divisor=32),
  113. dict(type='ImageToTensor', keys=['img']),
  114. dict(type='Collect', keys=['img']),
  115. ])
  116. ]
  117. data = dict(
  118. samples_per_gpu=16,
  119. workers_per_gpu=8,
  120. train=dict(
  121. type=dataset_type,
  122. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_train/images/',
  123. classes=classes,
  124. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_train/annotations/train.json',
  125. pipeline=train_pipeline),
  126. val=dict(
  127. type=dataset_type,
  128. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_test/images/',
  129. classes=classes,
  130. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_test/annotations/test.json',
  131. pipeline=test_pipeline),
  132. test=dict(
  133. type=dataset_type,
  134. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_test/images/',
  135. classes=classes,
  136. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_test/annotations/test.json',
  137. pipeline=test_pipeline))
  138. # optimizer
  139. optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
  140. optimizer_config = dict(grad_clip=None)
  141. # learning policy
  142. lr_config = dict(
  143. policy='CosineAnnealing',
  144. warmup='linear',
  145. warmup_iters=3000,
  146. warmup_ratio=1.0 / 10,
  147. min_lr_ratio=1e-5)
  148. runner = dict(type='EpochBasedRunner', max_epochs=60)
  149. evaluation = dict(interval=5, metric='bbox')

No Description

Contributors (1)