You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

AD_dsxw_test14.py 5.4 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149
  1. _base_ = [
  2. '../_base_/models/cascade_rcnn_r50_fpn.py',
  3. '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
  4. ]
  5. model = dict(
  6. backbone=dict(
  7. _delete_=True,
  8. type='PyramidVisionTransformerV2',
  9. embed_dims=64,
  10. num_layers=[3, 6, 40, 3],
  11. mlp_ratios=(4, 4, 4, 4),
  12. init_cfg=dict(checkpoint='https://github.com/whai362/PVT/'
  13. 'releases/download/v2/pvt_v2_b5.pth')),
  14. neck=dict(
  15. type='FPN',#FPN PAFPN
  16. in_channels=[64, 128, 320, 512],
  17. out_channels=256,
  18. num_outs=5,
  19. start_level=1,
  20. add_extra_convs='on_input'),
  21. roi_head=dict(
  22. bbox_head=[
  23. dict(
  24. type='Shared2FCBBoxHead',
  25. in_channels=256,
  26. fc_out_channels=1024,
  27. roi_feat_size=7,
  28. num_classes=3,
  29. bbox_coder=dict(
  30. type='DeltaXYWHBBoxCoder',
  31. target_means=[0., 0., 0., 0.],
  32. target_stds=[0.1, 0.1, 0.2, 0.2]),
  33. reg_class_agnostic=True,
  34. loss_cls=dict(
  35. type='CrossEntropyLoss',
  36. use_sigmoid=False,
  37. loss_weight=1.0),
  38. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  39. loss_weight=1.0)),
  40. dict(
  41. type='Shared2FCBBoxHead',
  42. in_channels=256,
  43. fc_out_channels=1024,
  44. roi_feat_size=7,
  45. num_classes=3,
  46. bbox_coder=dict(
  47. type='DeltaXYWHBBoxCoder',
  48. target_means=[0., 0., 0., 0.],
  49. target_stds=[0.05, 0.05, 0.1, 0.1]),
  50. reg_class_agnostic=True,
  51. loss_cls=dict(
  52. type='CrossEntropyLoss',
  53. use_sigmoid=False,
  54. loss_weight=1.0),
  55. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  56. loss_weight=1.0)),
  57. dict(
  58. type='Shared2FCBBoxHead',
  59. in_channels=256,
  60. fc_out_channels=1024,
  61. roi_feat_size=7,
  62. num_classes=3,
  63. bbox_coder=dict(
  64. type='DeltaXYWHBBoxCoder',
  65. target_means=[0., 0., 0., 0.],
  66. target_stds=[0.033, 0.033, 0.067, 0.067]),
  67. reg_class_agnostic=True,
  68. loss_cls=dict(
  69. type='CrossEntropyLoss',
  70. use_sigmoid=False,
  71. loss_weight=1.0),
  72. loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
  73. ]))
  74. dataset_type = 'CocoDataset'
  75. classes = ('False_welding','Missing_parts','Displacement')
  76. img_norm_cfg = dict(
  77. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  78. train_pipeline = [
  79. dict(type='LoadImageFromFile'),
  80. dict(type='LoadAnnotations', with_bbox=True),
  81. dict(
  82. type='Resize',
  83. img_scale=[(400, 300), (500, 400)],
  84. multiscale_mode='value',
  85. keep_ratio=True),
  86. dict(type='RandomFlip', flip_ratio=[0.2,0.2,0.2], direction=['horizontal', 'vertical', 'diagonal']),
  87. dict(type='BrightnessTransform', level=5, prob=0.5),
  88. dict(type='ContrastTransform', level=5, prob=0.5),
  89. dict(type='RandomShift', shift_ratio=0.5),
  90. dict(type='MinIoURandomCrop', min_ious=(0.5, 0.7, 0.9), min_crop_size=0.8),
  91. dict(type='Normalize', **img_norm_cfg),
  92. dict(type='Pad', size_divisor=32),
  93. dict(type='DefaultFormatBundle'),
  94. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
  95. ]
  96. test_pipeline = [
  97. dict(type='LoadImageFromFile'),
  98. dict(
  99. type='MultiScaleFlipAug',
  100. img_scale=[(400, 300), (500, 400)],
  101. flip=True,
  102. transforms=[
  103. dict(type='Resize', keep_ratio=True),
  104. dict(type='RandomFlip'),
  105. dict(type='Normalize', **img_norm_cfg),
  106. dict(type='Pad', size_divisor=32),
  107. dict(type='ImageToTensor', keys=['img']),
  108. dict(type='Collect', keys=['img']),
  109. ])
  110. ]
  111. data = dict(
  112. samples_per_gpu=16,
  113. workers_per_gpu=8,
  114. train=dict(
  115. type=dataset_type,
  116. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_train/images/',
  117. classes=classes,
  118. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_train/annotations/train.json',
  119. pipeline=train_pipeline),
  120. val=dict(
  121. type=dataset_type,
  122. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_test/images/',
  123. classes=classes,
  124. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_test/annotations/test.json',
  125. pipeline=test_pipeline),
  126. test=dict(
  127. type=dataset_type,
  128. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_test/images/',
  129. classes=classes,
  130. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_test/annotations/test.json',
  131. pipeline=test_pipeline))
  132. # optimizer
  133. optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
  134. optimizer_config = dict(grad_clip=None)
  135. # learning policy
  136. lr_config = dict(
  137. policy='CosineAnnealing',
  138. warmup='linear',
  139. warmup_iters=2000,
  140. warmup_ratio=1.0 / 10,
  141. min_lr_ratio=1e-5)
  142. runner = dict(type='EpochBasedRunner', max_epochs=60)
  143. evaluation = dict(interval=5, metric='bbox')

No Description

Contributors (1)