You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

AD_dsxw_test12.py 5.8 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161
  1. #_base_ = '../cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco.py'
  2. _base_ = [
  3. '../_base_/models/cascade_rcnn_r50_fpn.py',
  4. '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
  5. ]
  6. model = dict(
  7. backbone=dict(
  8. type='DetectoRS_ResNeXt',
  9. conv_cfg=dict(type='ConvAWS'),
  10. sac=dict(type='SAC', use_deform=True),
  11. stage_with_sac=(False, True, True, True),
  12. output_img=True),
  13. neck=dict(
  14. type='RFP',
  15. rfp_steps=2,
  16. aspp_out_channels=64,
  17. aspp_dilations=(1, 3, 6, 1),
  18. rfp_backbone=dict(
  19. rfp_inplanes=256,
  20. type='DetectoRS_ResNeXt',
  21. depth=101,
  22. groups=64,
  23. base_width=4,
  24. num_stages=4,
  25. out_indices=(0, 1, 2, 3),
  26. frozen_stages=1,
  27. norm_cfg=dict(type='BN', requires_grad=True),
  28. norm_eval=True,
  29. conv_cfg=dict(type='ConvAWS'),
  30. pretrained='open-mmlab://resnext101_64x4d',
  31. style='pytorch')),
  32. roi_head=dict(
  33. bbox_head=[
  34. dict(
  35. type='Shared2FCBBoxHead',
  36. in_channels=256,
  37. fc_out_channels=1024,
  38. roi_feat_size=7,
  39. num_classes=3,
  40. bbox_coder=dict(
  41. type='DeltaXYWHBBoxCoder',
  42. target_means=[0., 0., 0., 0.],
  43. target_stds=[0.1, 0.1, 0.2, 0.2]),
  44. reg_class_agnostic=True,
  45. loss_cls=dict(
  46. type='CrossEntropyLoss',
  47. use_sigmoid=False,
  48. loss_weight=1.0),
  49. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  50. loss_weight=1.0)),
  51. dict(
  52. type='Shared2FCBBoxHead',
  53. in_channels=256,
  54. fc_out_channels=1024,
  55. roi_feat_size=7,
  56. num_classes=3,
  57. bbox_coder=dict(
  58. type='DeltaXYWHBBoxCoder',
  59. target_means=[0., 0., 0., 0.],
  60. target_stds=[0.05, 0.05, 0.1, 0.1]),
  61. reg_class_agnostic=True,
  62. loss_cls=dict(
  63. type='CrossEntropyLoss',
  64. use_sigmoid=False,
  65. loss_weight=1.0),
  66. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  67. loss_weight=1.0)),
  68. dict(
  69. type='Shared2FCBBoxHead',
  70. in_channels=256,
  71. fc_out_channels=1024,
  72. roi_feat_size=7,
  73. num_classes=3,
  74. bbox_coder=dict(
  75. type='DeltaXYWHBBoxCoder',
  76. target_means=[0., 0., 0., 0.],
  77. target_stds=[0.033, 0.033, 0.067, 0.067]),
  78. reg_class_agnostic=True,
  79. loss_cls=dict(
  80. type='CrossEntropyLoss',
  81. use_sigmoid=False,
  82. loss_weight=1.0),
  83. loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
  84. ]))
  85. dataset_type = 'CocoDataset'
  86. classes = ('False_welding','Missing_parts','Displacement')
  87. img_norm_cfg = dict(
  88. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  89. train_pipeline = [
  90. dict(type='LoadImageFromFile'),
  91. dict(type='LoadAnnotations', with_bbox=True),
  92. dict(
  93. type='Resize',
  94. img_scale=[(400, 300), (500, 400)],
  95. multiscale_mode='value',
  96. keep_ratio=True),
  97. dict(type='RandomFlip', flip_ratio=[0.2,0.2,0.2], direction=['horizontal', 'vertical', 'diagonal']),
  98. dict(type='BrightnessTransform', level=5, prob=0.5),
  99. dict(type='ContrastTransform', level=5, prob=0.5),
  100. dict(type='RandomShift', shift_ratio=0.5),
  101. dict(type='MinIoURandomCrop', min_ious=(0.5, 0.7, 0.9), min_crop_size=0.8),
  102. dict(type='Normalize', **img_norm_cfg),
  103. dict(type='Pad', size_divisor=32),
  104. dict(type='DefaultFormatBundle'),
  105. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
  106. ]
  107. test_pipeline = [
  108. dict(type='LoadImageFromFile'),
  109. dict(
  110. type='MultiScaleFlipAug',
  111. img_scale=[(400, 300), (500, 400)],
  112. flip=True,
  113. transforms=[
  114. dict(type='Resize', keep_ratio=True),
  115. dict(type='RandomFlip'),
  116. dict(type='Normalize', **img_norm_cfg),
  117. dict(type='Pad', size_divisor=32),
  118. dict(type='ImageToTensor', keys=['img']),
  119. dict(type='Collect', keys=['img']),
  120. ])
  121. ]
  122. data = dict(
  123. samples_per_gpu=8,
  124. workers_per_gpu=8,
  125. train=dict(
  126. type=dataset_type,
  127. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_train/images/',
  128. classes=classes,
  129. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_train/annotations/train.json',
  130. pipeline=train_pipeline),
  131. val=dict(
  132. type=dataset_type,
  133. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_test/images/',
  134. classes=classes,
  135. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_test/annotations/test.json',
  136. pipeline=test_pipeline),
  137. test=dict(
  138. type=dataset_type,
  139. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_test/images/',
  140. classes=classes,
  141. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_test/annotations/test.json',
  142. pipeline=test_pipeline))
  143. # optimizer
  144. optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
  145. optimizer_config = dict(grad_clip=None)
  146. # learning policy
  147. lr_config = dict(
  148. policy='CosineAnnealing',
  149. warmup='linear',
  150. warmup_iters=2000,
  151. warmup_ratio=1.0 / 10,
  152. min_lr_ratio=1e-5)
  153. runner = dict(type='EpochBasedRunner', max_epochs=60)
  154. evaluation = dict(interval=5, metric='bbox')

No Description

Contributors (1)