You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

mstrain-poly_3x_coco_instance.py 2.5 kB

2 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980
  1. _base_ = '../_base_/default_runtime.py'
  2. # dataset settings
  3. dataset_type = 'CocoDataset'
  4. data_root = 'data/coco/'
  5. img_norm_cfg = dict(
  6. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  7. # In mstrain 3x config, img_scale=[(1333, 640), (1333, 800)],
  8. # multiscale_mode='range'
  9. train_pipeline = [
  10. dict(type='LoadImageFromFile'),
  11. dict(
  12. type='LoadAnnotations',
  13. with_bbox=True,
  14. with_mask=True,
  15. poly2mask=False),
  16. dict(
  17. type='Resize',
  18. img_scale=[(1333, 640), (1333, 800)],
  19. multiscale_mode='range',
  20. keep_ratio=True),
  21. dict(type='RandomFlip', flip_ratio=0.5),
  22. dict(type='Normalize', **img_norm_cfg),
  23. dict(type='Pad', size_divisor=32),
  24. dict(type='DefaultFormatBundle'),
  25. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
  26. ]
  27. test_pipeline = [
  28. dict(type='LoadImageFromFile'),
  29. dict(
  30. type='MultiScaleFlipAug',
  31. img_scale=(1333, 800),
  32. flip=False,
  33. transforms=[
  34. dict(type='Resize', keep_ratio=True),
  35. dict(type='RandomFlip'),
  36. dict(type='Normalize', **img_norm_cfg),
  37. dict(type='Pad', size_divisor=32),
  38. dict(type='ImageToTensor', keys=['img']),
  39. dict(type='Collect', keys=['img']),
  40. ])
  41. ]
  42. # Use RepeatDataset to speed up training
  43. data = dict(
  44. samples_per_gpu=2,
  45. workers_per_gpu=2,
  46. train=dict(
  47. type='RepeatDataset',
  48. times=3,
  49. dataset=dict(
  50. type=dataset_type,
  51. ann_file=data_root + 'annotations/instances_train2017.json',
  52. img_prefix=data_root + 'train2017/',
  53. pipeline=train_pipeline)),
  54. val=dict(
  55. type=dataset_type,
  56. ann_file=data_root + 'annotations/instances_val2017.json',
  57. img_prefix=data_root + 'val2017/',
  58. pipeline=test_pipeline),
  59. test=dict(
  60. type=dataset_type,
  61. ann_file=data_root + 'annotations/instances_val2017.json',
  62. img_prefix=data_root + 'val2017/',
  63. pipeline=test_pipeline))
  64. evaluation = dict(interval=1, metric=['bbox', 'segm'])
  65. # optimizer
  66. optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
  67. optimizer_config = dict(grad_clip=None)
  68. # learning policy
  69. # Experiments show that using step=[9, 11] has higher performance
  70. lr_config = dict(
  71. policy='step',
  72. warmup='linear',
  73. warmup_iters=500,
  74. warmup_ratio=0.001,
  75. step=[9, 11])
  76. runner = dict(type='EpochBasedRunner', max_epochs=12)

No Description

Contributors (2)