You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

AD_dsxw_test51.py 4.5 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132
  1. _base_ = [
  2. '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
  3. ]
  4. model = dict(
  5. type='GFL',
  6. backbone=dict(
  7. type='ResNeXt',
  8. depth=101,
  9. groups=64,
  10. base_width=4,
  11. num_stages=4,
  12. out_indices=(0, 1, 2, 3),
  13. frozen_stages=1,
  14. norm_cfg=dict(type='BN', requires_grad=True),
  15. style='pytorch',
  16. init_cfg=dict(
  17. type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')),
  18. neck=dict(
  19. type='FPN',
  20. in_channels=[256, 512, 1024, 2048],
  21. out_channels=256,
  22. start_level=1,
  23. add_extra_convs='on_output',
  24. num_outs=5),
  25. bbox_head=dict(
  26. type='GFLHead',
  27. num_classes=11,
  28. in_channels=256,
  29. stacked_convs=4,
  30. feat_channels=256,
  31. anchor_generator=dict(
  32. type='AnchorGenerator',
  33. ratios=[1.0],
  34. octave_base_scale=8,
  35. scales_per_octave=1,
  36. strides=[8, 16, 32, 64, 128]),
  37. loss_cls=dict(
  38. type='QualityFocalLoss',
  39. use_sigmoid=True,
  40. beta=2.0,
  41. loss_weight=1.0),
  42. loss_dfl=dict(type='DistributionFocalLoss', loss_weight=0.25),
  43. reg_max=16,
  44. loss_bbox=dict(type='GIoULoss', loss_weight=2.0)),
  45. # training and testing settings
  46. train_cfg=dict(
  47. assigner=dict(type='ATSSAssigner', topk=9),
  48. allowed_border=-1,
  49. pos_weight=-1,
  50. debug=False),
  51. test_cfg=dict(
  52. nms_pre=1000,
  53. min_bbox_size=0,
  54. score_thr=0.05,
  55. nms=dict(type='nms', iou_threshold=0.6),
  56. max_per_img=100))
  57. dataset_type = 'CocoDataset'
  58. classes = ('yiwei','loujian','celi','libei','fantie','lianxi','duojian','shunjian','shaoxi','jiahan','yiwu')
  59. img_norm_cfg = dict(
  60. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  61. train_pipeline = [
  62. dict(type='LoadImageFromFile'),
  63. dict(type='LoadAnnotations', with_bbox=True),
  64. dict(
  65. type='Resize',
  66. img_scale=[(400, 400), (500, 500)],
  67. multiscale_mode='value',
  68. keep_ratio=True),
  69. dict(type='RandomFlip', flip_ratio=[0.2,0.2,0.2], direction=['horizontal', 'vertical', 'diagonal']),
  70. dict(type='BrightnessTransform', level=5, prob=0.5),
  71. dict(type='ContrastTransform', level=5, prob=0.5),
  72. dict(type='RandomShift', shift_ratio=0.5),
  73. dict(type='MinIoURandomCrop', min_ious=(0.5, 0.7, 0.9), min_crop_size=0.8),
  74. dict(type='Normalize', **img_norm_cfg),
  75. dict(type='Pad', size_divisor=32),
  76. dict(type='DefaultFormatBundle'),
  77. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
  78. ]
  79. test_pipeline = [
  80. dict(type='LoadImageFromFile'),
  81. dict(
  82. type='MultiScaleFlipAug',
  83. img_scale=[(400, 400)],
  84. flip=False,
  85. transforms=[
  86. dict(type='Resize', keep_ratio=True),
  87. dict(type='RandomFlip'),
  88. dict(type='Normalize', **img_norm_cfg),
  89. dict(type='Pad', size_divisor=32),
  90. dict(type='ImageToTensor', keys=['img']),
  91. dict(type='Collect', keys=['img']),
  92. ])
  93. ]
  94. data = dict(
  95. samples_per_gpu=16,
  96. workers_per_gpu=8,
  97. train=dict(
  98. type=dataset_type,
  99. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v10/dsxw_train/images/',
  100. classes=classes,
  101. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v10/dsxw_train/annotations/train.json',
  102. pipeline=train_pipeline),
  103. val=dict(
  104. type=dataset_type,
  105. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v10/dsxw_test/images/',
  106. classes=classes,
  107. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v10/dsxw_test/annotations/test.json',
  108. pipeline=test_pipeline),
  109. test=dict(
  110. type=dataset_type,
  111. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v10/dsxw_test/images/',
  112. classes=classes,
  113. ann_file='/home/shanwei-luo/userdata/datasetsdsxw_dataset_v10/dsxw_test/annotations/test.json',
  114. pipeline=test_pipeline))
  115. # optimizer
  116. optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
  117. optimizer_config = dict(grad_clip=None)
  118. # learning policy
  119. lr_config = dict(
  120. policy='CosineAnnealing',
  121. warmup='linear',
  122. warmup_iters=5000,
  123. warmup_ratio=1.0 / 10,
  124. min_lr_ratio=1e-5)
  125. runner = dict(type='EpochBasedRunner', max_epochs=60)
  126. evaluation = dict(interval=5, metric='bbox')

No Description

Contributors (2)