|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160 |
- # Tutorial 10: Weight initialization
-
- During training, a proper initialization strategy is beneficial to speeding up the training or obtaining a higher performance. [MMCV](https://github.com/open-mmlab/mmcv/blob/master/mmcv/cnn/utils/weight_init.py) provide some commonly used methods for initializing modules like `nn.Conv2d`. Model initialization in MMdetection mainly uses `init_cfg`. Users can initialize models with following two steps:
-
- 1. Define `init_cfg` for a model or its components in `model_cfg`, but `init_cfg` of children components have higher priority and will override `init_cfg` of parents modules.
- 2. Build model as usual, but call `model.init_weights()` method explicitly, and model parameters will be initialized as configuration.
-
- The high-level workflow of initialization in MMdetection is :
-
- model_cfg(init_cfg) -> build_from_cfg -> model -> init_weight() -> initialize(self, self.init_cfg) -> children's init_weight()
-
- ### Description
-
- It is dict or list[dict], and contains the following keys and values:
-
- - `type` (str), containing the initializer name in `INTIALIZERS`, and followed by arguments of the initializer.
- - `layer` (str or list[str]), containing the names of basiclayers in Pytorch or MMCV with learnable parameters that will be initialized, e.g. `'Conv2d'`,`'DeformConv2d'`.
- - `override` (dict or list[dict]), containing the sub-modules that not inherit from BaseModule and whose initialization configuration is different from other layers' which are in `'layer'` key. Initializer defined in `type` will work for all layers defined in `layer`, so if sub-modules are not derived Classes of `BaseModule` but can be initialized as same ways of layers in `layer`, it does not need to use `override`. `override` contains:
- - `type` followed by arguments of initializer;
- - `name` to indicate sub-module which will be initialized.
-
- ### Initialize parameters
-
- Inherit a new model from `mmcv.runner.BaseModule` or `mmdet.models` Here we show an example of FooModel.
-
- ```python
- import torch.nn as nn
- from mmcv.runner import BaseModule
-
- class FooModel(BaseModule)
- def __init__(self,
- arg1,
- arg2,
- init_cfg=None):
- super(FooModel, self).__init__(init_cfg)
- ...
- ```
-
- - Initialize model by using `init_cfg` directly in code
-
- ```python
- import torch.nn as nn
- from mmcv.runner import BaseModule
- # or directly inherit mmdet models
-
- class FooModel(BaseModule)
- def __init__(self,
- arg1,
- arg2,
- init_cfg=XXX):
- super(FooModel, self).__init__(init_cfg)
- ...
- ```
-
- - Initialize model by using `init_cfg` directly in `mmcv.Sequential` or `mmcv.ModuleList` code
-
- ```python
- from mmcv.runner import BaseModule, ModuleList
-
- class FooModel(BaseModule)
- def __init__(self,
- arg1,
- arg2,
- init_cfg=None):
- super(FooModel, self).__init__(init_cfg)
- ...
- self.conv1 = ModuleList(init_cfg=XXX)
- ```
-
- - Initialize model by using `init_cfg` in config file
-
- ```python
- model = dict(
- ...
- model = dict(
- type='FooModel',
- arg1=XXX,
- arg2=XXX,
- init_cfg=XXX),
- ...
- ```
-
- ### Usage of init_cfg
-
- 1. Initialize model by `layer` key
-
- If we only define `layer`, it just initialize the layer in `layer` key.
-
- NOTE: Value of `layer` key is the class name with attributes weights and bias of Pytorch, (so such as `MultiheadAttention layer` is not supported).
-
- - Define `layer` key for initializing module with same configuration.
-
- ```python
- init_cfg = dict(type='Constant', layer=['Conv1d', 'Conv2d', 'Linear'], val=1)
- # initialize whole module with same configuration
- ```
-
- - Define `layer` key for initializing layer with different configurations.
-
- ```python
- init_cfg = [dict(type='Constant', layer='Conv1d', val=1),
- dict(type='Constant', layer='Conv2d', val=2),
- dict(type='Constant', layer='Linear', val=3)]
- # nn.Conv1d will be initialized with dict(type='Constant', val=1)
- # nn.Conv2d will be initialized with dict(type='Constant', val=2)
- # nn.Linear will be initialized with dict(type='Constant', val=3)
- ```
-
- 2. Initialize model by `override` key
-
- - When initializing some specific part with its attribute name, we can use `override` key, and the value in `override` will ignore the value in init_cfg.
-
- ```python
- # layers:
- # self.feat = nn.Conv1d(3, 1, 3)
- # self.reg = nn.Conv2d(3, 3, 3)
- # self.cls = nn.Linear(1,2)
-
- init_cfg = dict(type='Constant',
- layer=['Conv1d','Conv2d'], val=1, bias=2,
- override=dict(type='Constant', name='reg', val=3, bias=4))
- # self.feat and self.cls will be initialized with dict(type='Constant', val=1, bias=2)
- # The module called 'reg' will be initialized with dict(type='Constant', val=3, bias=4)
- ```
-
- - If `layer` is None in init_cfg, only sub-module with the name in override will be initialized, and type and other args in override can be omitted.
-
- ```python
- # layers:
- # self.feat = nn.Conv1d(3, 1, 3)
- # self.reg = nn.Conv2d(3, 3, 3)
- # self.cls = nn.Linear(1,2)
-
- init_cfg = dict(type='Constant', val=1, bias=2, override=dict(name='reg'))
-
- # self.feat and self.cls will be initialized by Pytorch
- # The module called 'reg' will be initialized with dict(type='Constant', val=1, bias=2)
- ```
-
- - If we don't define `layer` key or `override` key, it will not initialize anything.
- - Invalid usage
-
- ```python
- # It is invalid that override don't have name key
- init_cfg = dict(type='Constant', layer ['Conv1d','Conv2d'], val=1, bias=2,
- override=dict(type='Constant', val=3, bias=4))
-
- # It is also invalid that override has name and other args except type
- init_cfg = dict(type='Constant', layer ['Conv1d','Conv2d'], val=1, bias=2,
- override=dict(name='reg', val=3, bias=4))
- ```
-
- 3. Initialize model with the pretrained model
-
- ```python
- init_cfg = dict(type='Pretrained',
- checkpoint='torchvision://resnet50')
- ```
-
- More details can refer to the documentation in [MMCV](https://mmcv.readthedocs.io/en/latest/cnn.html#weight-initialization) and MMCV [PR #780](https://github.com/open-mmlab/mmcv/pull/780)
|