You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

AD_yh_test06.py 4.6 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143
  1. _base_ = [
  2. '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
  3. ]
  4. norm_cfg = dict(type='SyncBN', requires_grad=True)
  5. model = dict(
  6. type='ATSS',
  7. backbone=dict(
  8. type='ResNeXt',
  9. depth=101,
  10. groups=64,
  11. base_width=4,
  12. num_stages=4,
  13. out_indices=(0, 1, 2, 3),
  14. frozen_stages=1,
  15. norm_cfg=norm_cfg,
  16. dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
  17. stage_with_dcn=(False, True, True, True),
  18. style='pytorch',
  19. init_cfg=dict(
  20. type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')),
  21. neck=dict(
  22. type='FPN',
  23. in_channels=[256, 512, 1024, 2048],
  24. out_channels=256,
  25. start_level=1,
  26. add_extra_convs='on_output',
  27. num_outs=5),
  28. bbox_head=dict(
  29. type='GFLHead',
  30. num_classes=2,
  31. in_channels=256,
  32. stacked_convs=4,
  33. feat_channels=256,
  34. anchor_generator=dict(
  35. type='AnchorGenerator',
  36. ratios=[1.0],
  37. octave_base_scale=8,
  38. scales_per_octave=1,
  39. strides=[8, 16, 32, 64, 128]),
  40. loss_cls=dict(
  41. type='QualityFocalLoss',
  42. use_sigmoid=True,
  43. beta=2.0,
  44. loss_weight=1.0),
  45. loss_dfl=dict(type='DistributionFocalLoss', loss_weight=0.25),
  46. reg_max=16,
  47. loss_bbox=dict(type='GIoULoss', loss_weight=2.0)),
  48. # training and testing settings
  49. train_cfg=dict(
  50. assigner=dict(type='ATSSAssigner', topk=9),
  51. allowed_border=-1,
  52. pos_weight=-1,
  53. debug=False),
  54. test_cfg=dict(
  55. nms_pre=1000,
  56. min_bbox_size=0,
  57. score_thr=0.05,
  58. nms=dict(type='nms', iou_threshold=0.6),
  59. max_per_img=100))
  60. dataset_type = 'CocoDataset'
  61. classes = ('zangwuyise', 'guashang')
  62. img_norm_cfg = dict(
  63. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  64. train_pipeline = [
  65. dict(type='LoadImageFromFile'),
  66. dict(type='LoadAnnotations', with_bbox=True),
  67. dict(
  68. type='Resize',
  69. img_scale=[(1024, 1024), (1280, 1280)],
  70. multiscale_mode='value',
  71. keep_ratio=True),
  72. dict(type='RandomFlip', flip_ratio=[0.2,0.2,0.2], direction=['horizontal', 'vertical', 'diagonal']),
  73. dict(type='BrightnessTransform', level=5, prob=0.5),
  74. dict(type='ContrastTransform', level=5, prob=0.5),
  75. dict(type='RandomShift', shift_ratio=0.5),
  76. dict(type='MinIoURandomCrop', min_ious=(0.5, 0.7, 0.9), min_crop_size=0.5),
  77. dict(type='Normalize', **img_norm_cfg),
  78. dict(type='Pad', size_divisor=32),
  79. dict(type='DefaultFormatBundle'),
  80. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
  81. ]
  82. test_pipeline = [
  83. dict(type='LoadImageFromFile'),
  84. dict(
  85. type='MultiScaleFlipAug',
  86. img_scale=[(1280, 1280)],
  87. flip=False,
  88. transforms=[
  89. dict(type='Resize', keep_ratio=True),
  90. dict(type='RandomFlip'),
  91. dict(type='Normalize', **img_norm_cfg),
  92. dict(type='Pad', size_divisor=32),
  93. dict(type='ImageToTensor', keys=['img']),
  94. dict(type='Collect', keys=['img']),
  95. ])
  96. ]
  97. data = dict(
  98. samples_per_gpu=1,
  99. workers_per_gpu=8,
  100. train=dict(
  101. type=dataset_type,
  102. img_prefix='/home/shanwei-luo/teamdata/surf0413/images/',
  103. classes=classes,
  104. ann_file='/home/shanwei-luo/teamdata/surf0413/annotations/train_cat_mode.json',
  105. pipeline=train_pipeline),
  106. val=dict(
  107. type=dataset_type,
  108. img_prefix='/home/shanwei-luo/teamdata/surf0413/images/',
  109. classes=classes,
  110. ann_file='/home/shanwei-luo/teamdata/surf0413/annotations/val_cat_mode.json',
  111. pipeline=test_pipeline),
  112. test=dict(
  113. type=dataset_type,
  114. img_prefix='/home/shanwei-luo/teamdata/surf0413/images/',
  115. classes=classes,
  116. ann_file='/home/shanwei-luo/teamdata/surf0413/annotations/val_cat_mode.json',
  117. pipeline=test_pipeline))
  118. # optimizer
  119. optimizer = dict(type='SGD', lr=0.001, momentum=0.9, weight_decay=0.0001)
  120. optimizer_config = dict(grad_clip=None)
  121. # learning policy
  122. lr_config = dict(
  123. policy='CosineAnnealing',
  124. warmup='linear',
  125. warmup_iters=1000,
  126. warmup_ratio=1.0 / 10,
  127. min_lr_ratio=1e-5)
  128. runner = dict(type='EpochBasedRunner', max_epochs=40)
  129. evaluation = dict(interval=2, metric='bbox')
  130. checkpoint_config = dict(interval=2)
  131. log_config = dict(
  132. interval=20,
  133. hooks=[
  134. dict(type='TextLoggerHook'),
  135. # dict(type='TensorboardLoggerHook')
  136. ])

No Description

Contributors (2)