You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

metafile.yml 2.3 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778
  1. Collections:
  2. - Name: YOLACT
  3. Metadata:
  4. Training Data: COCO
  5. Training Techniques:
  6. - SGD with Momentum
  7. - Weight Decay
  8. Training Resources: 8x V100 GPUs
  9. Architecture:
  10. - FPN
  11. - ResNet
  12. Paper:
  13. URL: https://arxiv.org/abs/1904.02689
  14. Title: 'YOLACT: Real-time Instance Segmentation'
  15. README: configs/yolact/README.md
  16. Code:
  17. URL: https://github.com/open-mmlab/mmdetection/blob/v2.5.0/mmdet/models/detectors/yolact.py#L9
  18. Version: v2.5.0
  19. Models:
  20. - Name: yolact_r50_1x8_coco
  21. In Collection: YOLACT
  22. Config: configs/yolact/yolact_r50_1x8_coco.py
  23. Metadata:
  24. Training Resources: 1x V100 GPU
  25. Batch Size: 8
  26. inference time (ms/im):
  27. - value: 23.53
  28. hardware: V100
  29. backend: PyTorch
  30. batch size: 1
  31. mode: FP32
  32. resolution: (550, 550)
  33. Results:
  34. - Task: Instance Segmentation
  35. Dataset: COCO
  36. Metrics:
  37. mask AP: 29.0
  38. Weights: https://download.openmmlab.com/mmdetection/v2.0/yolact/yolact_r50_1x8_coco/yolact_r50_1x8_coco_20200908-f38d58df.pth
  39. - Name: yolact_r50_8x8_coco
  40. In Collection: YOLACT
  41. Config: configs/yolact/yolact_r50_8x8_coco.py
  42. Metadata:
  43. Batch Size: 64
  44. inference time (ms/im):
  45. - value: 23.53
  46. hardware: V100
  47. backend: PyTorch
  48. batch size: 1
  49. mode: FP32
  50. resolution: (550, 550)
  51. Results:
  52. - Task: Instance Segmentation
  53. Dataset: COCO
  54. Metrics:
  55. mask AP: 28.4
  56. Weights: https://download.openmmlab.com/mmdetection/v2.0/yolact/yolact_r50_8x8_coco/yolact_r50_8x8_coco_20200908-ca34f5db.pth
  57. - Name: yolact_r101_1x8_coco
  58. In Collection: YOLACT
  59. Config: configs/yolact/yolact_r101_1x8_coco.py
  60. Metadata:
  61. Training Resources: 1x V100 GPU
  62. Batch Size: 8
  63. inference time (ms/im):
  64. - value: 29.85
  65. hardware: V100
  66. backend: PyTorch
  67. batch size: 1
  68. mode: FP32
  69. resolution: (550, 550)
  70. Results:
  71. - Task: Instance Segmentation
  72. Dataset: COCO
  73. Metrics:
  74. mask AP: 30.4
  75. Weights: https://download.openmmlab.com/mmdetection/v2.0/yolact/yolact_r101_1x8_coco/yolact_r101_1x8_coco_20200908-4cbe9101.pth

No Description

Contributors (2)