|
12345678910111213141516171819202122232425262728293031323334353637383940414243 |
- # WIDER Face Dataset
-
- <!-- [DATASET] -->
-
- To use the WIDER Face dataset you need to download it
- and extract to the `data/WIDERFace` folder. Annotation in the VOC format
- can be found in this [repo](https://github.com/sovrasov/wider-face-pascal-voc-annotations.git).
- You should move the annotation files from `WIDER_train_annotations` and `WIDER_val_annotations` folders
- to the `Annotation` folders inside the corresponding directories `WIDER_train` and `WIDER_val`.
- Also annotation lists `val.txt` and `train.txt` should be copied to `data/WIDERFace` from `WIDER_train_annotations` and `WIDER_val_annotations`.
- The directory should be like this:
-
- ```
- mmdetection
- ├── mmdet
- ├── tools
- ├── configs
- ├── data
- │ ├── WIDERFace
- │ │ ├── WIDER_train
- │ | │ ├──0--Parade
- │ | │ ├── ...
- │ | │ ├── Annotations
- │ │ ├── WIDER_val
- │ | │ ├──0--Parade
- │ | │ ├── ...
- │ | │ ├── Annotations
- │ │ ├── val.txt
- │ │ ├── train.txt
-
- ```
-
- After that you can train the SSD300 on WIDER by launching training with the `ssd300_wider_face.py` config or
- create your own config based on the presented one.
-
- ```
- @inproceedings{yang2016wider,
- Author = {Yang, Shuo and Luo, Ping and Loy, Chen Change and Tang, Xiaoou},
- Booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
- Title = {WIDER FACE: A Face Detection Benchmark},
- Year = {2016}
- }
- ```
|