You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

solo_r50_fpn_1x_coco.py 1.5 kB

2 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253
  1. _base_ = [
  2. '../_base_/datasets/coco_instance.py',
  3. '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
  4. ]
  5. # model settings
  6. model = dict(
  7. type='SOLO',
  8. backbone=dict(
  9. type='ResNet',
  10. depth=50,
  11. num_stages=4,
  12. out_indices=(0, 1, 2, 3),
  13. frozen_stages=1,
  14. init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'),
  15. style='pytorch'),
  16. neck=dict(
  17. type='FPN',
  18. in_channels=[256, 512, 1024, 2048],
  19. out_channels=256,
  20. start_level=0,
  21. num_outs=5),
  22. mask_head=dict(
  23. type='SOLOHead',
  24. num_classes=80,
  25. in_channels=256,
  26. stacked_convs=7,
  27. feat_channels=256,
  28. strides=[8, 8, 16, 32, 32],
  29. scale_ranges=((1, 96), (48, 192), (96, 384), (192, 768), (384, 2048)),
  30. pos_scale=0.2,
  31. num_grids=[40, 36, 24, 16, 12],
  32. cls_down_index=0,
  33. loss_mask=dict(type='DiceLoss', use_sigmoid=True, loss_weight=3.0),
  34. loss_cls=dict(
  35. type='FocalLoss',
  36. use_sigmoid=True,
  37. gamma=2.0,
  38. alpha=0.25,
  39. loss_weight=1.0),
  40. norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)),
  41. # model training and testing settings
  42. test_cfg=dict(
  43. nms_pre=500,
  44. score_thr=0.1,
  45. mask_thr=0.5,
  46. filter_thr=0.05,
  47. kernel='gaussian', # gaussian/linear
  48. sigma=2.0,
  49. max_per_img=100))
  50. # optimizer
  51. optimizer = dict(type='SGD', lr=0.01)

No Description

Contributors (2)