You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 3.3 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142
  1. # SOLO: Segmenting Objects by Locations
  2. ## Introduction
  3. ```
  4. @inproceedings{wang2020solo,
  5. title = {{SOLO}: Segmenting Objects by Locations},
  6. author = {Wang, Xinlong and Kong, Tao and Shen, Chunhua and Jiang, Yuning and Li, Lei},
  7. booktitle = {Proc. Eur. Conf. Computer Vision (ECCV)},
  8. year = {2020}
  9. }
  10. ```
  11. ## Results and Models
  12. ### SOLO
  13. | Backbone | Style | MS train | Lr schd | Mem (GB) | Inf time (fps) | mask AP | Download |
  14. |:---------:|:-------:|:--------:|:-------:|:--------:|:--------------:|:------:|:--------:|
  15. | R-50 | pytorch | N | 1x | 8.0 | 14.0 | 33.1 | [model](https://download.openmmlab.com/mmdetection/v2.0/solo/solo_r50_fpn_1x_coco/solo_r50_fpn_1x_coco_20210821_035055-2290a6b8.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/solo/solo_r50_fpn_1x_coco/solo_r50_fpn_1x_coco_20210821_035055.log.json) |
  16. | R-50 | pytorch | Y | 3x | 7.4 | 14.0 | 35.9 | [model](https://download.openmmlab.com/mmdetection/v2.0/solo/solo_r50_fpn_3x_coco/solo_r50_fpn_3x_coco_20210901_012353-11d224d7.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/solo/solo_r50_fpn_3x_coco/solo_r50_fpn_3x_coco_20210901_012353.log.json) |
  17. ### Decoupled SOLO
  18. | Backbone | Style | MS train | Lr schd | Mem (GB) | Inf time (fps) | mask AP | Download |
  19. |:---------:|:-------:|:--------:|:-------:|:--------:|:--------------:|:-------:|:--------:|
  20. | R-50 | pytorch | N | 1x | 7.8 | 12.5 | 33.9 | [model](https://download.openmmlab.com/mmdetection/v2.0/solo/decoupled_solo_r50_fpn_1x_coco/decoupled_solo_r50_fpn_1x_coco_20210820_233348-6337c589.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/solo/decoupled_solo_r50_fpn_1x_coco/decoupled_solo_r50_fpn_1x_coco_20210820_233348.log.json) |
  21. | R-50 | pytorch | Y | 3x | 7.9 | 12.5 | 36.7 | [model](https://download.openmmlab.com/mmdetection/v2.0/solo/decoupled_solo_r50_fpn_3x_coco/decoupled_solo_r50_fpn_3x_coco_20210821_042504-7b3301ec.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/solo/decoupled_solo_r50_fpn_3x_coco/decoupled_solo_r50_fpn_3x_coco_20210821_042504.log.json) |
  22. - Decoupled SOLO has a decoupled head which is different from SOLO head.
  23. Decoupled SOLO serves as an efficient and equivalent variant in accuracy
  24. of SOLO. Please refer to the corresponding config files for details.
  25. ### Decoupled Light SOLO
  26. | Backbone | Style | MS train | Lr schd | Mem (GB) | Inf time (fps) | mask AP | Download |
  27. |:---------:|:-------:|:--------:|:-------:|:--------:|:--------------:|:------:|:--------:|
  28. | R-50 | pytorch | Y | 3x | 2.2 | 31.2 | 32.9 | [model](https://download.openmmlab.com/mmdetection/v2.0/solo/decoupled_solo_light_r50_fpn_3x_coco/decoupled_solo_light_r50_fpn_3x_coco_20210906_142703-e70e226f.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/solo/decoupled_solo_light_r50_fpn_3x_coco/decoupled_solo_light_r50_fpn_3x_coco_20210906_142703.log.json) |
  29. - Decoupled Light SOLO using decoupled structure similar to Decoupled
  30. SOLO head, with light-weight head and smaller input size, Please refer
  31. to the corresponding config files for details.

No Description

Contributors (2)