You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

metafile.yml 8.6 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261
  1. Collections:
  2. - Name: RetinaNet
  3. Metadata:
  4. Training Data: COCO
  5. Training Techniques:
  6. - SGD with Momentum
  7. - Weight Decay
  8. Training Resources: 8x V100 GPUs
  9. Architecture:
  10. - Focal Loss
  11. - FPN
  12. - ResNet
  13. Paper:
  14. URL: https://arxiv.org/abs/1708.02002
  15. Title: 'Focal Loss for Dense Object Detection'
  16. README: configs/retinanet/README.md
  17. Code:
  18. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/detectors/retinanet.py#L6
  19. Version: v2.0.0
  20. Models:
  21. - Name: retinanet_r50_caffe_fpn_1x_coco
  22. In Collection: RetinaNet
  23. Config: configs/retinanet/retinanet_r50_caffe_fpn_1x_coco.py
  24. Metadata:
  25. Training Memory (GB): 3.5
  26. inference time (ms/im):
  27. - value: 53.76
  28. hardware: V100
  29. backend: PyTorch
  30. batch size: 1
  31. mode: FP32
  32. resolution: (800, 1333)
  33. Epochs: 12
  34. Results:
  35. - Task: Object Detection
  36. Dataset: COCO
  37. Metrics:
  38. box AP: 36.3
  39. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_caffe_fpn_1x_coco/retinanet_r50_caffe_fpn_1x_coco_20200531-f11027c5.pth
  40. - Name: retinanet_r50_fpn_1x_coco
  41. In Collection: RetinaNet
  42. Config: configs/retinanet/retinanet_r50_fpn_1x_coco.py
  43. Metadata:
  44. Training Memory (GB): 3.8
  45. inference time (ms/im):
  46. - value: 52.63
  47. hardware: V100
  48. backend: PyTorch
  49. batch size: 1
  50. mode: FP32
  51. resolution: (800, 1333)
  52. Epochs: 12
  53. Results:
  54. - Task: Object Detection
  55. Dataset: COCO
  56. Metrics:
  57. box AP: 36.5
  58. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_fpn_1x_coco/retinanet_r50_fpn_1x_coco_20200130-c2398f9e.pth
  59. - Name: retinanet_r50_fpn_2x_coco
  60. In Collection: RetinaNet
  61. Config: configs/retinanet/retinanet_r50_fpn_2x_coco.py
  62. Metadata:
  63. Epochs: 24
  64. Results:
  65. - Task: Object Detection
  66. Dataset: COCO
  67. Metrics:
  68. box AP: 37.4
  69. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_fpn_2x_coco/retinanet_r50_fpn_2x_coco_20200131-fdb43119.pth
  70. - Name: retinanet_r50_fpn_mstrain_3x_coco
  71. In Collection: RetinaNet
  72. Config: configs/retinanet/retinanet_r50_fpn_mstrain_640-800_3x_coco.py
  73. Metadata:
  74. Epochs: 36
  75. Results:
  76. - Task: Object Detection
  77. Dataset: COCO
  78. Metrics:
  79. box AP: 39.5
  80. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_fpn_mstrain_3x_coco/retinanet_r50_fpn_mstrain_3x_coco_20210718_220633-88476508.pth
  81. - Name: retinanet_r101_caffe_fpn_1x_coco
  82. In Collection: RetinaNet
  83. Config: configs/retinanet/retinanet_r101_caffe_fpn_1x_coco.py
  84. Metadata:
  85. Training Memory (GB): 5.5
  86. inference time (ms/im):
  87. - value: 68.03
  88. hardware: V100
  89. backend: PyTorch
  90. batch size: 1
  91. mode: FP32
  92. resolution: (800, 1333)
  93. Epochs: 12
  94. Results:
  95. - Task: Object Detection
  96. Dataset: COCO
  97. Metrics:
  98. box AP: 38.5
  99. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_caffe_fpn_1x_coco/retinanet_r101_caffe_fpn_1x_coco_20200531-b428fa0f.pth
  100. - Name: retinanet_r101_caffe_fpn_mstrain_3x_coco
  101. In Collection: RetinaNet
  102. Config: configs/retinanet/retinanet_r101_caffe_fpn_1x_coco.py
  103. Metadata:
  104. Epochs: 36
  105. Results:
  106. - Task: Object Detection
  107. Dataset: COCO
  108. Metrics:
  109. box AP: 40.7
  110. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_caffe_fpn_mstrain_3x_coco/retinanet_r101_caffe_fpn_mstrain_3x_coco_20210721_063439-88a8a944.pth
  111. - Name: retinanet_r101_fpn_1x_coco
  112. In Collection: RetinaNet
  113. Config: configs/retinanet/retinanet_r101_fpn_1x_coco.py
  114. Metadata:
  115. Training Memory (GB): 5.7
  116. inference time (ms/im):
  117. - value: 66.67
  118. hardware: V100
  119. backend: PyTorch
  120. batch size: 1
  121. mode: FP32
  122. resolution: (800, 1333)
  123. Epochs: 12
  124. Results:
  125. - Task: Object Detection
  126. Dataset: COCO
  127. Metrics:
  128. box AP: 38.5
  129. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_fpn_1x_coco/retinanet_r101_fpn_1x_coco_20200130-7a93545f.pth
  130. - Name: retinanet_r101_fpn_2x_coco
  131. In Collection: RetinaNet
  132. Config: configs/retinanet/retinanet_r101_fpn_2x_coco.py
  133. Metadata:
  134. Training Memory (GB): 5.7
  135. inference time (ms/im):
  136. - value: 66.67
  137. hardware: V100
  138. backend: PyTorch
  139. batch size: 1
  140. mode: FP32
  141. resolution: (800, 1333)
  142. Epochs: 24
  143. Results:
  144. - Task: Object Detection
  145. Dataset: COCO
  146. Metrics:
  147. box AP: 38.9
  148. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_fpn_2x_coco/retinanet_r101_fpn_2x_coco_20200131-5560aee8.pth
  149. - Name: retinanet_r101_fpn_mstrain_3x_coco
  150. In Collection: RetinaNet
  151. Config: configs/retinanet/retinanet_r101_fpn_2x_coco.py
  152. Metadata:
  153. Epochs: 36
  154. Results:
  155. - Task: Object Detection
  156. Dataset: COCO
  157. Metrics:
  158. box AP: 41
  159. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_fpn_mstrain_3x_coco/retinanet_r101_fpn_mstrain_3x_coco_20210720_214650-7ee888e0.pth
  160. - Name: retinanet_x101_32x4d_fpn_1x_coco
  161. In Collection: RetinaNet
  162. Config: configs/retinanet/retinanet_x101_32x4d_fpn_1x_coco.py
  163. Metadata:
  164. Training Memory (GB): 7.0
  165. inference time (ms/im):
  166. - value: 82.64
  167. hardware: V100
  168. backend: PyTorch
  169. batch size: 1
  170. mode: FP32
  171. resolution: (800, 1333)
  172. Epochs: 12
  173. Results:
  174. - Task: Object Detection
  175. Dataset: COCO
  176. Metrics:
  177. box AP: 39.9
  178. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_32x4d_fpn_1x_coco/retinanet_x101_32x4d_fpn_1x_coco_20200130-5c8b7ec4.pth
  179. - Name: retinanet_x101_32x4d_fpn_2x_coco
  180. In Collection: RetinaNet
  181. Config: configs/retinanet/retinanet_x101_32x4d_fpn_2x_coco.py
  182. Metadata:
  183. Training Memory (GB): 7.0
  184. inference time (ms/im):
  185. - value: 82.64
  186. hardware: V100
  187. backend: PyTorch
  188. batch size: 1
  189. mode: FP32
  190. resolution: (800, 1333)
  191. Epochs: 24
  192. Results:
  193. - Task: Object Detection
  194. Dataset: COCO
  195. Metrics:
  196. box AP: 40.1
  197. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_32x4d_fpn_2x_coco/retinanet_x101_32x4d_fpn_2x_coco_20200131-237fc5e1.pth
  198. - Name: retinanet_x101_64x4d_fpn_1x_coco
  199. In Collection: RetinaNet
  200. Config: configs/retinanet/retinanet_x101_64x4d_fpn_1x_coco.py
  201. Metadata:
  202. Training Memory (GB): 10.0
  203. inference time (ms/im):
  204. - value: 114.94
  205. hardware: V100
  206. backend: PyTorch
  207. batch size: 1
  208. mode: FP32
  209. resolution: (800, 1333)
  210. Epochs: 12
  211. Results:
  212. - Task: Object Detection
  213. Dataset: COCO
  214. Metrics:
  215. box AP: 41.0
  216. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_64x4d_fpn_1x_coco/retinanet_x101_64x4d_fpn_1x_coco_20200130-366f5af1.pth
  217. - Name: retinanet_x101_64x4d_fpn_2x_coco
  218. In Collection: RetinaNet
  219. Config: configs/retinanet/retinanet_x101_64x4d_fpn_2x_coco.py
  220. Metadata:
  221. Training Memory (GB): 10.0
  222. inference time (ms/im):
  223. - value: 114.94
  224. hardware: V100
  225. backend: PyTorch
  226. batch size: 1
  227. mode: FP32
  228. resolution: (800, 1333)
  229. Epochs: 24
  230. Results:
  231. - Task: Object Detection
  232. Dataset: COCO
  233. Metrics:
  234. box AP: 40.8
  235. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_64x4d_fpn_2x_coco/retinanet_x101_64x4d_fpn_2x_coco_20200131-bca068ab.pth
  236. - Name: retinanet_x101_64x4d_fpn_mstrain_3x_coco
  237. In Collection: RetinaNet
  238. Config: configs/retinanet/retinanet_x101_64x4d_fpn_mstrain_640-800_3x_coco.py
  239. Metadata:
  240. Epochs: 36
  241. Results:
  242. - Task: Object Detection
  243. Dataset: COCO
  244. Metrics:
  245. box AP: 41.6
  246. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_64x4d_fpn_mstrain_3x_coco/retinanet_x101_64x4d_fpn_mstrain_3x_coco_20210719_051838-022c2187.pth

No Description

Contributors (2)