You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 4.8 kB

2 years ago
12345678910111213141516171819202122232425262728293031323334353637383940
  1. # Prime Sample Attention in Object Detection
  2. ## Introduction
  3. <!-- [ALGORITHM] -->
  4. ```latex
  5. @inproceedings{cao2019prime,
  6. title={Prime sample attention in object detection},
  7. author={Cao, Yuhang and Chen, Kai and Loy, Chen Change and Lin, Dahua},
  8. booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
  9. year={2020}
  10. }
  11. ```
  12. ## Results and models
  13. | PISA | Network | Backbone | Lr schd | box AP | mask AP | Config | Download |
  14. |:----:|:-------:|:-------------------:|:-------:|:------:|:-------:|:------:|:--------:|
  15. | × | Faster R-CNN | R-50-FPN | 1x | 36.4 | | - |
  16. | √ | Faster R-CNN | R-50-FPN | 1x | 38.4 | | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/pisa/pisa_faster_rcnn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_faster_rcnn_r50_fpn_1x_coco/pisa_faster_rcnn_r50_fpn_1x_coco-dea93523.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_faster_rcnn_r50_fpn_1x_coco/pisa_faster_rcnn_r50_fpn_1x_coco_20200506_185619.log.json) |
  17. | × | Faster R-CNN | X101-32x4d-FPN | 1x | 40.1 | | - |
  18. | √ | Faster R-CNN | X101-32x4d-FPN | 1x | 41.9 | | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/pisa/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco-e4accec4.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco_20200505_181503.log.json) |
  19. | × | Mask R-CNN | R-50-FPN | 1x | 37.3 | 34.2 | - |
  20. | √ | Mask R-CNN | R-50-FPN | 1x | 39.1 | 35.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/pisa/pisa_mask_rcnn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_mask_rcnn_r50_fpn_1x_coco/pisa_mask_rcnn_r50_fpn_1x_coco-dfcedba6.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_mask_rcnn_r50_fpn_1x_coco/pisa_mask_rcnn_r50_fpn_1x_coco_20200508_150500.log.json) |
  21. | × | Mask R-CNN | X101-32x4d-FPN | 1x | 41.1 | 37.1 | - |
  22. | √ | Mask R-CNN | X101-32x4d-FPN | 1x | | | |
  23. | × | RetinaNet | R-50-FPN | 1x | 35.6 | | - |
  24. | √ | RetinaNet | R-50-FPN | 1x | 36.9 | | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/pisa/pisa_retinanet_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_retinanet_r50_fpn_1x_coco/pisa_retinanet_r50_fpn_1x_coco-76409952.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_retinanet_r50_fpn_1x_coco/pisa_retinanet_r50_fpn_1x_coco_20200504_014311.log.json) |
  25. | × | RetinaNet | X101-32x4d-FPN | 1x | 39.0 | | - |
  26. | √ | RetinaNet | X101-32x4d-FPN | 1x | 40.7 | | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/pisa/pisa_retinanet_x101_32x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_retinanet_x101_32x4d_fpn_1x_coco/pisa_retinanet_x101_32x4d_fpn_1x_coco-a0c13c73.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_retinanet_x101_32x4d_fpn_1x_coco/pisa_retinanet_x101_32x4d_fpn_1x_coco_20200505_001404.log.json) |
  27. | × | SSD300 | VGG16 | 1x | 25.6 | | - |
  28. | √ | SSD300 | VGG16 | 1x | 27.6 | | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/pisa/pisa_ssd300_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_ssd300_coco/pisa_ssd300_coco-710e3ac9.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_ssd300_coco/pisa_ssd300_coco_20200504_144325.log.json) |
  29. | × | SSD300 | VGG16 | 1x | 29.3 | | - |
  30. | √ | SSD300 | VGG16 | 1x | 31.8 | | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/pisa/pisa_ssd512_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_ssd512_coco/pisa_ssd512_coco-247addee.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_ssd512_coco/pisa_ssd512_coco_20200508_131030.log.json) |
  31. **Notes:**
  32. - In the original paper, all models are trained and tested on mmdet v1.x, thus results may not be exactly the same with this release on v2.0.
  33. - It is noted PISA only modifies the training pipeline so the inference time remains the same with the baseline.

No Description

Contributors (2)