You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssd512_coco.py 2.7 kB

2 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879
  1. _base_ = 'ssd300_coco.py'
  2. input_size = 512
  3. model = dict(
  4. neck=dict(
  5. out_channels=(512, 1024, 512, 256, 256, 256, 256),
  6. level_strides=(2, 2, 2, 2, 1),
  7. level_paddings=(1, 1, 1, 1, 1),
  8. last_kernel_size=4),
  9. bbox_head=dict(
  10. in_channels=(512, 1024, 512, 256, 256, 256, 256),
  11. anchor_generator=dict(
  12. type='SSDAnchorGenerator',
  13. scale_major=False,
  14. input_size=input_size,
  15. basesize_ratio_range=(0.1, 0.9),
  16. strides=[8, 16, 32, 64, 128, 256, 512],
  17. ratios=[[2], [2, 3], [2, 3], [2, 3], [2, 3], [2], [2]])))
  18. # dataset settings
  19. dataset_type = 'CocoDataset'
  20. data_root = 'data/coco/'
  21. img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True)
  22. train_pipeline = [
  23. dict(type='LoadImageFromFile', to_float32=True),
  24. dict(type='LoadAnnotations', with_bbox=True),
  25. dict(
  26. type='PhotoMetricDistortion',
  27. brightness_delta=32,
  28. contrast_range=(0.5, 1.5),
  29. saturation_range=(0.5, 1.5),
  30. hue_delta=18),
  31. dict(
  32. type='Expand',
  33. mean=img_norm_cfg['mean'],
  34. to_rgb=img_norm_cfg['to_rgb'],
  35. ratio_range=(1, 4)),
  36. dict(
  37. type='MinIoURandomCrop',
  38. min_ious=(0.1, 0.3, 0.5, 0.7, 0.9),
  39. min_crop_size=0.3),
  40. dict(type='Resize', img_scale=(512, 512), keep_ratio=False),
  41. dict(type='Normalize', **img_norm_cfg),
  42. dict(type='RandomFlip', flip_ratio=0.5),
  43. dict(type='DefaultFormatBundle'),
  44. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
  45. ]
  46. test_pipeline = [
  47. dict(type='LoadImageFromFile'),
  48. dict(
  49. type='MultiScaleFlipAug',
  50. img_scale=(512, 512),
  51. flip=False,
  52. transforms=[
  53. dict(type='Resize', keep_ratio=False),
  54. dict(type='Normalize', **img_norm_cfg),
  55. dict(type='ImageToTensor', keys=['img']),
  56. dict(type='Collect', keys=['img']),
  57. ])
  58. ]
  59. data = dict(
  60. samples_per_gpu=8,
  61. workers_per_gpu=3,
  62. train=dict(
  63. _delete_=True,
  64. type='RepeatDataset',
  65. times=5,
  66. dataset=dict(
  67. type=dataset_type,
  68. ann_file=data_root + 'annotations/instances_train2017.json',
  69. img_prefix=data_root + 'train2017/',
  70. pipeline=train_pipeline)),
  71. val=dict(pipeline=test_pipeline),
  72. test=dict(pipeline=test_pipeline))
  73. # optimizer
  74. optimizer = dict(type='SGD', lr=2e-3, momentum=0.9, weight_decay=5e-4)
  75. optimizer_config = dict(_delete_=True)
  76. custom_hooks = [
  77. dict(type='NumClassCheckHook'),
  78. dict(type='CheckInvalidLossHook', interval=50, priority='VERY_LOW')
  79. ]

No Description

Contributors (3)