|
123456789101112131415161718192021222324252627282930313233 |
- ## environment
- conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge
- pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple
- pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.8.0/index.html
- pip install terminaltables
- pip install pycocotools
-
- ## Filter ng categories to be detected
- python AOI_select.py --AOI_path AOI-data-path
-
- ## Find the white target box in the image and generate the corresponding box and label
- python AOI_get_box --AOI_path AOI-data-path --coco_path COCO_format_path --classes_file class_file
-
- ## convert to COCO dataset format
- python AOI_to_coco.py --root_dir COCO_format_path --save_path json_file(./train.json)
-
- ## Modify parameter file
- configs/AD_detection/AD_dsxw_test66.py
-
- ## single gpu train
- python tools/train.py configs/AD_detection/AD_dsxw_test66.py --gpus 1
-
- ## distribute train
- tools/dist_train.sh configs/AD_detection/AD_dsxw_test66.py 8(GPU_number)
-
- ## model eval
- python tools/test.py config_file ckpt_file --eval bbox
-
- ## search best threshold
- python select_threshold.py --config_file config_file --checkpoint_file ckpt_file --images_path testset_path(Contains two folders, OK and ng) --test_batch_size batch_size
-
- ## infer score result(Confidence,feature, etc.)
- python get_score_csv.py --config_file config_file --checkpoint_file ckpt_file --images_path testset_path(unlabel_data) --test_batch_size batch_size --result_path test.csv(Absolute path)
|