You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

yolof_r50_c5_8x8_1x_coco.py 3.3 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105
  1. _base_ = [
  2. '../_base_/datasets/coco_detection.py',
  3. '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
  4. ]
  5. model = dict(
  6. type='YOLOF',
  7. backbone=dict(
  8. type='ResNet',
  9. depth=50,
  10. num_stages=4,
  11. out_indices=(3, ),
  12. frozen_stages=1,
  13. norm_cfg=dict(type='BN', requires_grad=False),
  14. norm_eval=True,
  15. style='caffe',
  16. init_cfg=dict(
  17. type='Pretrained',
  18. checkpoint='open-mmlab://detectron/resnet50_caffe')),
  19. neck=dict(
  20. type='DilatedEncoder',
  21. in_channels=2048,
  22. out_channels=512,
  23. block_mid_channels=128,
  24. num_residual_blocks=4),
  25. bbox_head=dict(
  26. type='YOLOFHead',
  27. num_classes=80,
  28. in_channels=512,
  29. reg_decoded_bbox=True,
  30. anchor_generator=dict(
  31. type='AnchorGenerator',
  32. ratios=[1.0],
  33. scales=[1, 2, 4, 8, 16],
  34. strides=[32]),
  35. bbox_coder=dict(
  36. type='DeltaXYWHBBoxCoder',
  37. target_means=[.0, .0, .0, .0],
  38. target_stds=[1., 1., 1., 1.],
  39. add_ctr_clamp=True,
  40. ctr_clamp=32),
  41. loss_cls=dict(
  42. type='FocalLoss',
  43. use_sigmoid=True,
  44. gamma=2.0,
  45. alpha=0.25,
  46. loss_weight=1.0),
  47. loss_bbox=dict(type='GIoULoss', loss_weight=1.0)),
  48. # training and testing settings
  49. train_cfg=dict(
  50. assigner=dict(
  51. type='UniformAssigner', pos_ignore_thr=0.15, neg_ignore_thr=0.7),
  52. allowed_border=-1,
  53. pos_weight=-1,
  54. debug=False),
  55. test_cfg=dict(
  56. nms_pre=1000,
  57. min_bbox_size=0,
  58. score_thr=0.05,
  59. nms=dict(type='nms', iou_threshold=0.6),
  60. max_per_img=100))
  61. # optimizer
  62. optimizer = dict(
  63. type='SGD',
  64. lr=0.12,
  65. momentum=0.9,
  66. weight_decay=0.0001,
  67. paramwise_cfg=dict(
  68. norm_decay_mult=0., custom_keys={'backbone': dict(lr_mult=1. / 3)}))
  69. lr_config = dict(warmup_iters=1500, warmup_ratio=0.00066667)
  70. # use caffe img_norm
  71. img_norm_cfg = dict(
  72. mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
  73. train_pipeline = [
  74. dict(type='LoadImageFromFile'),
  75. dict(type='LoadAnnotations', with_bbox=True),
  76. dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
  77. dict(type='RandomFlip', flip_ratio=0.5),
  78. dict(type='RandomShift', shift_ratio=0.5, max_shift_px=32),
  79. dict(type='Normalize', **img_norm_cfg),
  80. dict(type='Pad', size_divisor=32),
  81. dict(type='DefaultFormatBundle'),
  82. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
  83. ]
  84. test_pipeline = [
  85. dict(type='LoadImageFromFile'),
  86. dict(
  87. type='MultiScaleFlipAug',
  88. img_scale=(1333, 800),
  89. flip=False,
  90. transforms=[
  91. dict(type='Resize', keep_ratio=True),
  92. dict(type='RandomFlip'),
  93. dict(type='Normalize', **img_norm_cfg),
  94. dict(type='Pad', size_divisor=32),
  95. dict(type='ImageToTensor', keys=['img']),
  96. dict(type='Collect', keys=['img']),
  97. ])
  98. ]
  99. data = dict(
  100. samples_per_gpu=8,
  101. workers_per_gpu=8,
  102. train=dict(pipeline=train_pipeline),
  103. val=dict(pipeline=test_pipeline),
  104. test=dict(pipeline=test_pipeline))

No Description

Contributors (3)