You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

yolov3_mobilenetv2_mstrain-416_300e_coco.py 4.5 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137
  1. _base_ = '../_base_/default_runtime.py'
  2. # model settings
  3. model = dict(
  4. type='YOLOV3',
  5. backbone=dict(
  6. type='MobileNetV2',
  7. out_indices=(2, 4, 6),
  8. act_cfg=dict(type='LeakyReLU', negative_slope=0.1),
  9. init_cfg=dict(
  10. type='Pretrained', checkpoint='open-mmlab://mmdet/mobilenet_v2')),
  11. neck=dict(
  12. type='YOLOV3Neck',
  13. num_scales=3,
  14. in_channels=[320, 96, 32],
  15. out_channels=[96, 96, 96]),
  16. bbox_head=dict(
  17. type='YOLOV3Head',
  18. num_classes=80,
  19. in_channels=[96, 96, 96],
  20. out_channels=[96, 96, 96],
  21. anchor_generator=dict(
  22. type='YOLOAnchorGenerator',
  23. base_sizes=[[(116, 90), (156, 198), (373, 326)],
  24. [(30, 61), (62, 45), (59, 119)],
  25. [(10, 13), (16, 30), (33, 23)]],
  26. strides=[32, 16, 8]),
  27. bbox_coder=dict(type='YOLOBBoxCoder'),
  28. featmap_strides=[32, 16, 8],
  29. loss_cls=dict(
  30. type='CrossEntropyLoss',
  31. use_sigmoid=True,
  32. loss_weight=1.0,
  33. reduction='sum'),
  34. loss_conf=dict(
  35. type='CrossEntropyLoss',
  36. use_sigmoid=True,
  37. loss_weight=1.0,
  38. reduction='sum'),
  39. loss_xy=dict(
  40. type='CrossEntropyLoss',
  41. use_sigmoid=True,
  42. loss_weight=2.0,
  43. reduction='sum'),
  44. loss_wh=dict(type='MSELoss', loss_weight=2.0, reduction='sum')),
  45. # training and testing settings
  46. train_cfg=dict(
  47. assigner=dict(
  48. type='GridAssigner',
  49. pos_iou_thr=0.5,
  50. neg_iou_thr=0.5,
  51. min_pos_iou=0)),
  52. test_cfg=dict(
  53. nms_pre=1000,
  54. min_bbox_size=0,
  55. score_thr=0.05,
  56. conf_thr=0.005,
  57. nms=dict(type='nms', iou_threshold=0.45),
  58. max_per_img=100))
  59. # dataset settings
  60. dataset_type = 'CocoDataset'
  61. data_root = 'data/coco/'
  62. img_norm_cfg = dict(
  63. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  64. train_pipeline = [
  65. dict(type='LoadImageFromFile', to_float32=True),
  66. dict(type='LoadAnnotations', with_bbox=True),
  67. dict(type='PhotoMetricDistortion'),
  68. dict(
  69. type='Expand',
  70. mean=img_norm_cfg['mean'],
  71. to_rgb=img_norm_cfg['to_rgb'],
  72. ratio_range=(1, 2)),
  73. dict(
  74. type='MinIoURandomCrop',
  75. min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9),
  76. min_crop_size=0.3),
  77. dict(
  78. type='Resize',
  79. img_scale=[(320, 320), (416, 416)],
  80. multiscale_mode='range',
  81. keep_ratio=True),
  82. dict(type='RandomFlip', flip_ratio=0.5),
  83. dict(type='Normalize', **img_norm_cfg),
  84. dict(type='Pad', size_divisor=32),
  85. dict(type='DefaultFormatBundle'),
  86. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
  87. ]
  88. test_pipeline = [
  89. dict(type='LoadImageFromFile'),
  90. dict(
  91. type='MultiScaleFlipAug',
  92. img_scale=(416, 416),
  93. flip=False,
  94. transforms=[
  95. dict(type='Resize', keep_ratio=True),
  96. dict(type='RandomFlip'),
  97. dict(type='Normalize', **img_norm_cfg),
  98. dict(type='Pad', size_divisor=32),
  99. dict(type='DefaultFormatBundle'),
  100. dict(type='Collect', keys=['img'])
  101. ])
  102. ]
  103. data = dict(
  104. samples_per_gpu=24,
  105. workers_per_gpu=4,
  106. train=dict(
  107. type='RepeatDataset', # use RepeatDataset to speed up training
  108. times=10,
  109. dataset=dict(
  110. type=dataset_type,
  111. ann_file=data_root + 'annotations/instances_train2017.json',
  112. img_prefix=data_root + 'train2017/',
  113. pipeline=train_pipeline)),
  114. val=dict(
  115. type=dataset_type,
  116. ann_file=data_root + 'annotations/instances_val2017.json',
  117. img_prefix=data_root + 'val2017/',
  118. pipeline=test_pipeline),
  119. test=dict(
  120. type=dataset_type,
  121. ann_file=data_root + 'annotations/instances_val2017.json',
  122. img_prefix=data_root + 'val2017/',
  123. pipeline=test_pipeline))
  124. # optimizer
  125. optimizer = dict(type='SGD', lr=0.003, momentum=0.9, weight_decay=0.0005)
  126. optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
  127. # learning policy
  128. lr_config = dict(
  129. policy='step',
  130. warmup='linear',
  131. warmup_iters=4000,
  132. warmup_ratio=0.0001,
  133. step=[24, 28])
  134. # runtime settings
  135. runner = dict(type='EpochBasedRunner', max_epochs=30)
  136. evaluation = dict(interval=1, metric=['bbox'])
  137. find_unused_parameters = True

No Description

Contributors (3)