You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 4.0 kB

2 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071
  1. # **Y**ou **O**nly **L**ook **A**t **C**oefficien**T**s
  2. <!-- [ALGORITHM] -->
  3. ```
  4. ██╗ ██╗ ██████╗ ██╗ █████╗ ██████╗████████╗
  5. ╚██╗ ██╔╝██╔═══██╗██║ ██╔══██╗██╔════╝╚══██╔══╝
  6. ╚████╔╝ ██║ ██║██║ ███████║██║ ██║
  7. ╚██╔╝ ██║ ██║██║ ██╔══██║██║ ██║
  8. ██║ ╚██████╔╝███████╗██║ ██║╚██████╗ ██║
  9. ╚═╝ ╚═════╝ ╚══════╝╚═╝ ╚═╝ ╚═════╝ ╚═╝
  10. ```
  11. A simple, fully convolutional model for real-time instance segmentation. This is the code for our paper:
  12. - [YOLACT: Real-time Instance Segmentation](https://arxiv.org/abs/1904.02689)
  13. <!-- - [YOLACT++: Better Real-time Instance Segmentation](https://arxiv.org/abs/1912.06218) -->
  14. For a real-time demo, check out our ICCV video:
  15. [![IMAGE ALT TEXT HERE](https://img.youtube.com/vi/0pMfmo8qfpQ/0.jpg)](https://www.youtube.com/watch?v=0pMfmo8qfpQ)
  16. ## Evaluation
  17. Here are our YOLACT models along with their FPS on a Titan Xp and mAP on COCO's `val`:
  18. | Image Size | GPU x BS | Backbone | *FPS | mAP | Weights | Configs | Download |
  19. |:----------:|:--------:|:-------------:|:-----:|:----:|:-------:|:------:|:--------:|
  20. | 550 | 1x8 | Resnet50-FPN | 42.5 | 29.0 | | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/yolact/yolact_r50_1x8_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/yolact/yolact_r50_1x8_coco/yolact_r50_1x8_coco_20200908-f38d58df.pth) |
  21. | 550 | 8x8 | Resnet50-FPN | 42.5 | 28.4 | | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/yolact/yolact_r50_8x8_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/yolact/yolact_r50_8x8_coco/yolact_r50_8x8_coco_20200908-ca34f5db.pth) |
  22. | 550 | 1x8 | Resnet101-FPN | 33.5 | 30.4 | | [config](https://github.com/open-mmlab/mmdetection/blob/master/configs/yolact/yolact_r101_1x8_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/yolact/yolact_r101_1x8_coco/yolact_r101_1x8_coco_20200908-4cbe9101.pth) |
  23. *Note: The FPS is evaluated by the [original implementation](https://github.com/dbolya/yolact). When calculating FPS, only the model inference time is taken into account. Data loading and post-processing operations such as converting masks to RLE code, generating COCO JSON results, image rendering are not included.
  24. ## Training
  25. All the aforementioned models are trained with a single GPU. It typically takes ~12GB VRAM when using resnet-101 as the backbone. If you want to try multiple GPUs training, you may have to modify the configuration files accordingly, such as adjusting the training schedule and freezing batch norm.
  26. ```Shell
  27. # Trains using the resnet-101 backbone with a batch size of 8 on a single GPU.
  28. ./tools/dist_train.sh configs/yolact/yolact_r101.py 1
  29. ```
  30. ## Testing
  31. Please refer to [mmdetection/docs/getting_started.md](https://github.com/open-mmlab/mmdetection/blob/master/docs/getting_started.md#inference-with-pretrained-models).
  32. ## Citation
  33. If you use YOLACT or this code base in your work, please cite
  34. ```latex
  35. @inproceedings{yolact-iccv2019,
  36. author = {Daniel Bolya and Chong Zhou and Fanyi Xiao and Yong Jae Lee},
  37. title = {YOLACT: {Real-time} Instance Segmentation},
  38. booktitle = {ICCV},
  39. year = {2019},
  40. }
  41. ```
  42. <!-- For YOLACT++, please cite
  43. ```latex
  44. @misc{yolact-plus-arxiv2019,
  45. title = {YOLACT++: Better Real-time Instance Segmentation},
  46. author = {Daniel Bolya and Chong Zhou and Fanyi Xiao and Yong Jae Lee},
  47. year = {2019},
  48. eprint = {1912.06218},
  49. archivePrefix = {arXiv},
  50. primaryClass = {cs.CV}
  51. }
  52. ``` -->

No Description

Contributors (3)