You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 3.6 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051
  1. # SCNet
  2. ## Introduction
  3. <!-- [ALGORITHM] -->
  4. We provide the code for reproducing experiment results of [SCNet](https://arxiv.org/abs/2012.10150).
  5. ```
  6. @inproceedings{vu2019cascade,
  7. title={SCNet: Training Inference Sample Consistency for Instance Segmentation},
  8. author={Vu, Thang and Haeyong, Kang and Yoo, Chang D},
  9. booktitle={AAAI},
  10. year={2021}
  11. }
  12. ```
  13. ## Dataset
  14. SCNet requires COCO and [COCO-stuff](http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/stuffthingmaps_trainval2017.zip) dataset for training. You need to download and extract it in the COCO dataset path.
  15. The directory should be like this.
  16. ```none
  17. mmdetection
  18. ├── mmdet
  19. ├── tools
  20. ├── configs
  21. ├── data
  22. │ ├── coco
  23. │ │ ├── annotations
  24. │ │ ├── train2017
  25. │ │ ├── val2017
  26. │ │ ├── test2017
  27. | | ├── stuffthingmaps
  28. ```
  29. ## Results and Models
  30. The results on COCO 2017val are shown in the below table. (results on test-dev are usually slightly higher than val)
  31. | Backbone | Style | Lr schd | Mem (GB) | Inf speed (fps) | box AP | mask AP | TTA box AP | TTA mask AP | Config | Download |
  32. |:---------------:|:-------:|:-------:|:--------:|:---------------:|:------:|:-------:|:----------:|:-----------:|:------:|:------------:|
  33. | R-50-FPN | pytorch | 1x | 7.0 | 6.2 | 43.5 | 39.2 | 44.8 | 40.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/scnet/scnet_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/scnet/scnet_r50_fpn_1x_coco/scnet_r50_fpn_1x_coco-c3f09857.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/scnet/scnet_r50_fpn_1x_coco/scnet_r50_fpn_1x_coco_20210117_192725.log.json) |
  34. | R-50-FPN | pytorch | 20e | 7.0 | 6.2 | 44.5 | 40.0 | 45.8 | 41.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/scnet/scnet_r50_fpn_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/scnet/scnet_r50_fpn_20e_coco/scnet_r50_fpn_20e_coco-a569f645.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/scnet/scnet_r50_fpn_20e_coco/scnet_r50_fpn_20e_coco_20210116_060148.log.json) |
  35. | R-101-FPN | pytorch | 20e | 8.9 | 5.8 | 45.8 | 40.9 | 47.3 | 42.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/scnet/scnet_r101_fpn_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/scnet/scnet_r101_fpn_20e_coco/scnet_r101_fpn_20e_coco-294e312c.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/scnet/scnet_r101_fpn_20e_coco/scnet_r101_fpn_20e_coco_20210118_175824.log.json) |
  36. | X-101-64x4d-FPN | pytorch | 20e | 13.2 | 4.9 | 47.5 | 42.3 | 48.9 | 44.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/scnet/scnet_x101_64x4d_fpn_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/scnet/scnet_x101_64x4d_fpn_20e_coco/scnet_x101_64x4d_fpn_20e_coco-fb09dec9.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/scnet/scnet_x101_64x4d_fpn_20e_coco/scnet_x101_64x4d_fpn_20e_coco_20210120_045959.log.json) |
  37. ### Notes
  38. - Training hyper-parameters are identical to those of [HTC](https://github.com/open-mmlab/mmdetection/tree/master/configs/htc).
  39. - TTA means Test Time Augmentation, which applies horizontal flip and multi-scale testing. Refer to [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/scnet/scnet_r50_fpn_1x_coco.py).

No Description

Contributors (3)