|
1234567891011121314151617181920212223242526 |
- # NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection
-
- ## Introduction
-
- <!-- [ALGORITHM] -->
-
- ```latex
- @inproceedings{ghiasi2019fpn,
- title={Nas-fpn: Learning scalable feature pyramid architecture for object detection},
- author={Ghiasi, Golnaz and Lin, Tsung-Yi and Le, Quoc V},
- booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
- pages={7036--7045},
- year={2019}
- }
- ```
-
- ## Results and Models
-
- We benchmark the new training schedule (crop training, large batch, unfrozen BN, 50 epochs) introduced in NAS-FPN. RetinaNet is used in the paper.
-
- | Backbone | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
- |:-----------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
- | R-50-FPN | 50e | 12.9 | 22.9 | 37.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/nas_fpn/retinanet_r50_fpn_crop640_50e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/nas_fpn/retinanet_r50_fpn_crop640_50e_coco/retinanet_r50_fpn_crop640_50e_coco-9b953d76.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/nas_fpn/retinanet_r50_fpn_crop640_50e_coco/retinanet_r50_fpn_crop640_50e_coco_20200529_095329.log.json) |
- | R-50-NASFPN | 50e | 13.2 | 23.0 | 40.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco/retinanet_r50_nasfpn_crop640_50e_coco-0ad1f644.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco/retinanet_r50_nasfpn_crop640_50e_coco_20200528_230008.log.json) |
-
- **Note**: We find that it is unstable to train NAS-FPN and there is a small chance that results can be 3% mAP lower.
|