You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 3.7 kB

2 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041
  1. # Libra R-CNN: Towards Balanced Learning for Object Detection
  2. ## Introduction
  3. <!-- [ALGORITHM] -->
  4. We provide config files to reproduce the results in the CVPR 2019 paper [Libra R-CNN](https://arxiv.org/pdf/1904.02701.pdf).
  5. The extended version of [Libra R-CNN](https://arxiv.org/pdf/2108.10175.pdf) is accpeted by IJCV.
  6. ```
  7. @inproceedings{pang2019libra,
  8. title={Libra R-CNN: Towards Balanced Learning for Object Detection},
  9. author={Pang, Jiangmiao and Chen, Kai and Shi, Jianping and Feng, Huajun and Ouyang, Wanli and Dahua Lin},
  10. booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
  11. year={2019}
  12. }
  13. @article{pang2021towards,
  14. title={Towards Balanced Learning for Instance Recognition},
  15. author={Pang, Jiangmiao and Chen, Kai and Li, Qi and Xu, Zhihai and Feng, Huajun and Shi, Jianping and Ouyang, Wanli and Lin, Dahua},
  16. journal={International Journal of Computer Vision},
  17. volume={129},
  18. number={5},
  19. pages={1376--1393},
  20. year={2021},
  21. publisher={Springer}
  22. }
  23. ```
  24. ## Results and models
  25. The results on COCO 2017val are shown in the below table. (results on test-dev are usually slightly higher than val)
  26. | Architecture | Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
  27. |:------------:|:---------------:|:-------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
  28. | Faster R-CNN | R-50-FPN | pytorch | 1x | 4.6 | 19.0 | 38.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco/libra_faster_rcnn_r50_fpn_1x_coco_20200130-3afee3a9.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco/libra_faster_rcnn_r50_fpn_1x_coco_20200130_204655.log.json) |
  29. | Fast R-CNN | R-50-FPN | pytorch | 1x | | | | |
  30. | Faster R-CNN | R-101-FPN | pytorch | 1x | 6.5 | 14.4 | 40.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/libra_rcnn/libra_faster_rcnn_r101_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_r101_fpn_1x_coco/libra_faster_rcnn_r101_fpn_1x_coco_20200203-8dba6a5a.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_r101_fpn_1x_coco/libra_faster_rcnn_r101_fpn_1x_coco_20200203_001405.log.json) |
  31. | Faster R-CNN | X-101-64x4d-FPN | pytorch | 1x | 10.8 | 8.5 | 42.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/libra_rcnn/libra_faster_rcnn_x101_64x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_x101_64x4d_fpn_1x_coco/libra_faster_rcnn_x101_64x4d_fpn_1x_coco_20200315-3a7d0488.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_x101_64x4d_fpn_1x_coco/libra_faster_rcnn_x101_64x4d_fpn_1x_coco_20200315_231625.log.json) |
  32. | RetinaNet | R-50-FPN | pytorch | 1x | 4.2 | 17.7 | 37.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/libra_rcnn/libra_retinanet_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_retinanet_r50_fpn_1x_coco/libra_retinanet_r50_fpn_1x_coco_20200205-804d94ce.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_retinanet_r50_fpn_1x_coco/libra_retinanet_r50_fpn_1x_coco_20200205_112757.log.json) |

No Description

Contributors (3)