You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssd300_coco_v1.py 2.7 kB

2 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879
  1. _base_ = [
  2. '../_base_/models/ssd300.py', '../_base_/datasets/coco_detection.py',
  3. '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py'
  4. ]
  5. # model settings
  6. input_size = 300
  7. model = dict(
  8. bbox_head=dict(
  9. type='SSDHead',
  10. anchor_generator=dict(
  11. type='LegacySSDAnchorGenerator',
  12. scale_major=False,
  13. input_size=input_size,
  14. basesize_ratio_range=(0.15, 0.9),
  15. strides=[8, 16, 32, 64, 100, 300],
  16. ratios=[[2], [2, 3], [2, 3], [2, 3], [2], [2]]),
  17. bbox_coder=dict(
  18. type='LegacyDeltaXYWHBBoxCoder',
  19. target_means=[.0, .0, .0, .0],
  20. target_stds=[0.1, 0.1, 0.2, 0.2])))
  21. # dataset settings
  22. dataset_type = 'CocoDataset'
  23. data_root = 'data/coco/'
  24. img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True)
  25. train_pipeline = [
  26. dict(type='LoadImageFromFile', to_float32=True),
  27. dict(type='LoadAnnotations', with_bbox=True),
  28. dict(
  29. type='PhotoMetricDistortion',
  30. brightness_delta=32,
  31. contrast_range=(0.5, 1.5),
  32. saturation_range=(0.5, 1.5),
  33. hue_delta=18),
  34. dict(
  35. type='Expand',
  36. mean=img_norm_cfg['mean'],
  37. to_rgb=img_norm_cfg['to_rgb'],
  38. ratio_range=(1, 4)),
  39. dict(
  40. type='MinIoURandomCrop',
  41. min_ious=(0.1, 0.3, 0.5, 0.7, 0.9),
  42. min_crop_size=0.3),
  43. dict(type='Resize', img_scale=(300, 300), keep_ratio=False),
  44. dict(type='Normalize', **img_norm_cfg),
  45. dict(type='RandomFlip', flip_ratio=0.5),
  46. dict(type='DefaultFormatBundle'),
  47. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
  48. ]
  49. test_pipeline = [
  50. dict(type='LoadImageFromFile'),
  51. dict(
  52. type='MultiScaleFlipAug',
  53. img_scale=(300, 300),
  54. flip=False,
  55. transforms=[
  56. dict(type='Resize', keep_ratio=False),
  57. dict(type='Normalize', **img_norm_cfg),
  58. dict(type='ImageToTensor', keys=['img']),
  59. dict(type='Collect', keys=['img']),
  60. ])
  61. ]
  62. data = dict(
  63. samples_per_gpu=8,
  64. workers_per_gpu=3,
  65. train=dict(
  66. _delete_=True,
  67. type='RepeatDataset',
  68. times=5,
  69. dataset=dict(
  70. type=dataset_type,
  71. ann_file=data_root + 'annotations/instances_train2017.json',
  72. img_prefix=data_root + 'train2017/',
  73. pipeline=train_pipeline)),
  74. val=dict(pipeline=test_pipeline),
  75. test=dict(pipeline=test_pipeline))
  76. # optimizer
  77. optimizer = dict(type='SGD', lr=2e-3, momentum=0.9, weight_decay=5e-4)
  78. optimizer_config = dict(_delete_=True)
  79. dist_params = dict(backend='nccl', port=29555)

No Description

Contributors (3)