You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 6.1 kB

2 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162
  1. # GRoIE
  2. ## A novel Region of Interest Extraction Layer for Instance Segmentation
  3. By Leonardo Rossi, Akbar Karimi and Andrea Prati from
  4. [IMPLab](http://implab.ce.unipr.it/).
  5. We provide configs to reproduce the results in the paper for
  6. "*A novel Region of Interest Extraction Layer for Instance Segmentation*"
  7. on COCO object detection.
  8. ## Introduction
  9. <!-- [ALGORITHM] -->
  10. This paper is motivated by the need to overcome to the limitations of existing
  11. RoI extractors which select only one (the best) layer from FPN.
  12. Our intuition is that all the layers of FPN retain useful information.
  13. Therefore, the proposed layer (called Generic RoI Extractor - **GRoIE**)
  14. introduces non-local building blocks and attention mechanisms to boost the
  15. performance.
  16. ## Results and models
  17. The results on COCO 2017 minival (5k images) are shown in the below table.
  18. ### Application of GRoIE to different architectures
  19. | Backbone | Method | Lr schd | box AP | mask AP | Config | Download|
  20. | :-------: | :--------------: | :-----: | :----: | :-----: | :-------:| :--------:|
  21. | R-50-FPN | Faster Original | 1x | 37.4 | | [config](../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130_204655.log.json) |
  22. | R-50-FPN | + GRoIE | 1x | 38.3 | | [config](./faster_rcnn_r50_fpn_groie_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/groie/faster_rcnn_r50_fpn_groie_1x_coco/faster_rcnn_r50_fpn_groie_1x_coco_20200604_211715-66ee9516.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/groie/faster_rcnn_r50_fpn_groie_1x_coco/faster_rcnn_r50_fpn_groie_1x_coco_20200604_211715.log.json) |
  23. | R-50-FPN | Grid R-CNN | 1x | 39.1 | | [config](./grid_rcnn_r50_fpn_gn-head_1x_coco.py)| [model](https://download.openmmlab.com/mmdetection/v2.0/groie/grid_rcnn_r50_fpn_gn-head_1x_coco/grid_rcnn_r50_fpn_gn-head_1x_coco_20200605_202059-64f00ee8.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/groie/grid_rcnn_r50_fpn_gn-head_1x_coco/grid_rcnn_r50_fpn_gn-head_1x_coco_20200605_202059.log.json) |
  24. | R-50-FPN | + GRoIE | 1x | | | [config](./grid_rcnn_r50_fpn_gn-head_groie_1x_coco.py)||
  25. | R-50-FPN | Mask R-CNN | 1x | 38.2 | 34.7 | [config](../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py)| [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205_050542.log.json) |
  26. | R-50-FPN | + GRoIE | 1x | 39.0 | 36.0 | [config](./mask_rcnn_r50_fpn_groie_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/groie/mask_rcnn_r50_fpn_groie_1x_coco/mask_rcnn_r50_fpn_groie_1x_coco_20200604_211715-50d90c74.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/groie/mask_rcnn_r50_fpn_groie_1x_coco/mask_rcnn_r50_fpn_groie_1x_coco_20200604_211715.log.json) |
  27. | R-50-FPN | GC-Net | 1x | 40.7 | 36.5 | [config](../gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco_20200202-50b90e5c.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco_20200202_085547.log.json) |
  28. | R-50-FPN | + GRoIE | 1x | 41.0 | 37.8 | [config](./mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/groie/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco_20200604_211715-42eb79e1.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/groie/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco_20200604_211715-42eb79e1.pth) |
  29. | R-101-FPN | GC-Net | 1x | 42.2 | 37.8 | [config](../gcnet/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco_20200206-8407a3f0.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco_20200206_142508.log.json) |
  30. | R-101-FPN | + GRoIE | 1x | 42.6 | 38.7 | [config](./mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco.py)| [model](https://download.openmmlab.com/mmdetection/v2.0/groie/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco_20200607_224507-8daae01c.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/groie/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco_20200607_224507.log.json) |
  31. ## Citation
  32. If you use this work or benchmark in your research, please cite this project.
  33. ```latex
  34. @inproceedings{rossi2021novel,
  35. title={A novel region of interest extraction layer for instance segmentation},
  36. author={Rossi, Leonardo and Karimi, Akbar and Prati, Andrea},
  37. booktitle={2020 25th International Conference on Pattern Recognition (ICPR)},
  38. pages={2203--2209},
  39. year={2021},
  40. organization={IEEE}
  41. }
  42. ```
  43. ## Contact
  44. The implementation of GRoIE is currently maintained by
  45. [Leonardo Rossi](https://github.com/hachreak/).

No Description

Contributors (3)