You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

metafile.yml 12 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335
  1. Collections:
  2. - Name: Deformable Convolutional Networks
  3. Metadata:
  4. Training Data: COCO
  5. Training Techniques:
  6. - SGD with Momentum
  7. - Weight Decay
  8. Training Resources: 8x V100 GPUs
  9. Architecture:
  10. - Deformable Convolution
  11. Paper:
  12. URL: https://arxiv.org/abs/1811.11168
  13. Title: 'Deformable ConvNets v2: More Deformable, Better Results'
  14. README: configs/dcn/README.md
  15. Code:
  16. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/ops/dcn/deform_conv.py#L15
  17. Version: v2.0.0
  18. Models:
  19. - Name: faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco
  20. In Collection: Deformable Convolutional Networks
  21. Config: configs/dcn/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py
  22. Metadata:
  23. Training Memory (GB): 4.0
  24. inference time (ms/im):
  25. - value: 56.18
  26. hardware: V100
  27. backend: PyTorch
  28. batch size: 1
  29. mode: FP32
  30. resolution: (800, 1333)
  31. Epochs: 12
  32. Results:
  33. - Task: Object Detection
  34. Dataset: COCO
  35. Metrics:
  36. box AP: 41.3
  37. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200130-d68aed1e.pth
  38. - Name: faster_rcnn_r50_fpn_mdconv_c3-c5_1x_coco
  39. In Collection: Deformable Convolutional Networks
  40. Config: configs/dcn/faster_rcnn_r50_fpn_mdconv_c3-c5_1x_coco.py
  41. Metadata:
  42. Training Memory (GB): 4.1
  43. inference time (ms/im):
  44. - value: 56.82
  45. hardware: V100
  46. backend: PyTorch
  47. batch size: 1
  48. mode: FP32
  49. resolution: (800, 1333)
  50. Epochs: 12
  51. Results:
  52. - Task: Object Detection
  53. Dataset: COCO
  54. Metrics:
  55. box AP: 41.4
  56. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_mdconv_c3-c5_1x_coco/faster_rcnn_r50_fpn_mdconv_c3-c5_1x_coco_20200130-d099253b.pth
  57. - Name: faster_rcnn_r50_fpn_mdconv_c3-c5_group4_1x_coco
  58. In Collection: Deformable Convolutional Networks
  59. Config: configs/dcn/faster_rcnn_r50_fpn_mdconv_c3-c5_group4_1x_coco.py
  60. Metadata:
  61. Training Memory (GB): 4.2
  62. inference time (ms/im):
  63. - value: 57.47
  64. hardware: V100
  65. backend: PyTorch
  66. batch size: 1
  67. mode: FP32
  68. resolution: (800, 1333)
  69. Epochs: 12
  70. Results:
  71. - Task: Object Detection
  72. Dataset: COCO
  73. Metrics:
  74. box AP: 41.5
  75. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_mdconv_c3-c5_group4_1x_coco/faster_rcnn_r50_fpn_mdconv_c3-c5_group4_1x_coco_20200130-01262257.pth
  76. - Name: faster_rcnn_r50_fpn_dpool_1x_coco
  77. In Collection: Deformable Convolutional Networks
  78. Config: configs/dcn/faster_rcnn_r50_fpn_dpool_1x_coco.py
  79. Metadata:
  80. Training Memory (GB): 5.0
  81. inference time (ms/im):
  82. - value: 58.14
  83. hardware: V100
  84. backend: PyTorch
  85. batch size: 1
  86. mode: FP32
  87. resolution: (800, 1333)
  88. Epochs: 12
  89. Results:
  90. - Task: Object Detection
  91. Dataset: COCO
  92. Metrics:
  93. box AP: 38.9
  94. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_dpool_1x_coco/faster_rcnn_r50_fpn_dpool_1x_coco_20200307-90d3c01d.pth
  95. - Name: faster_rcnn_r50_fpn_mdpool_1x_coco
  96. In Collection: Deformable Convolutional Networks
  97. Config: configs/dcn/faster_rcnn_r50_fpn_mdpool_1x_coco.py
  98. Metadata:
  99. Training Memory (GB): 5.8
  100. inference time (ms/im):
  101. - value: 60.24
  102. hardware: V100
  103. backend: PyTorch
  104. batch size: 1
  105. mode: FP32
  106. resolution: (800, 1333)
  107. Epochs: 12
  108. Results:
  109. - Task: Object Detection
  110. Dataset: COCO
  111. Metrics:
  112. box AP: 38.7
  113. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_mdpool_1x_coco/faster_rcnn_r50_fpn_mdpool_1x_coco_20200307-c0df27ff.pth
  114. - Name: faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco
  115. In Collection: Deformable Convolutional Networks
  116. Config: configs/dcn/faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py
  117. Metadata:
  118. Training Memory (GB): 6.0
  119. inference time (ms/im):
  120. - value: 80
  121. hardware: V100
  122. backend: PyTorch
  123. batch size: 1
  124. mode: FP32
  125. resolution: (800, 1333)
  126. Epochs: 12
  127. Results:
  128. - Task: Object Detection
  129. Dataset: COCO
  130. Metrics:
  131. box AP: 42.7
  132. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco/faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200203-1377f13d.pth
  133. - Name: faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco
  134. In Collection: Deformable Convolutional Networks
  135. Config: configs/dcn/faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py
  136. Metadata:
  137. Training Memory (GB): 7.3
  138. inference time (ms/im):
  139. - value: 100
  140. hardware: V100
  141. backend: PyTorch
  142. batch size: 1
  143. mode: FP32
  144. resolution: (800, 1333)
  145. Epochs: 12
  146. Results:
  147. - Task: Object Detection
  148. Dataset: COCO
  149. Metrics:
  150. box AP: 44.5
  151. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco/faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco_20200203-4f85c69c.pth
  152. - Name: mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco
  153. In Collection: Deformable Convolutional Networks
  154. Config: configs/dcn/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py
  155. Metadata:
  156. Training Memory (GB): 4.5
  157. inference time (ms/im):
  158. - value: 64.94
  159. hardware: V100
  160. backend: PyTorch
  161. batch size: 1
  162. mode: FP32
  163. resolution: (800, 1333)
  164. Epochs: 12
  165. Results:
  166. - Task: Object Detection
  167. Dataset: COCO
  168. Metrics:
  169. box AP: 41.8
  170. - Task: Instance Segmentation
  171. Dataset: COCO
  172. Metrics:
  173. mask AP: 37.4
  174. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200203-4d9ad43b.pth
  175. - Name: mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco
  176. In Collection: Deformable Convolutional Networks
  177. Config: configs/dcn/mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco.py
  178. Metadata:
  179. Training Memory (GB): 4.5
  180. inference time (ms/im):
  181. - value: 66.23
  182. hardware: V100
  183. backend: PyTorch
  184. batch size: 1
  185. mode: FP32
  186. resolution: (800, 1333)
  187. Epochs: 12
  188. Results:
  189. - Task: Object Detection
  190. Dataset: COCO
  191. Metrics:
  192. box AP: 41.5
  193. - Task: Instance Segmentation
  194. Dataset: COCO
  195. Metrics:
  196. mask AP: 37.1
  197. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco_20200203-ad97591f.pth
  198. - Name: mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco
  199. In Collection: Deformable Convolutional Networks
  200. Config: configs/dcn/mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py
  201. Metadata:
  202. Training Memory (GB): 6.5
  203. inference time (ms/im):
  204. - value: 85.47
  205. hardware: V100
  206. backend: PyTorch
  207. batch size: 1
  208. mode: FP32
  209. resolution: (800, 1333)
  210. Epochs: 12
  211. Results:
  212. - Task: Object Detection
  213. Dataset: COCO
  214. Metrics:
  215. box AP: 43.5
  216. - Task: Instance Segmentation
  217. Dataset: COCO
  218. Metrics:
  219. mask AP: 38.9
  220. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco/mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200216-a71f5bce.pth
  221. - Name: cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco
  222. In Collection: Deformable Convolutional Networks
  223. Config: configs/dcn/cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py
  224. Metadata:
  225. Training Memory (GB): 4.5
  226. inference time (ms/im):
  227. - value: 68.49
  228. hardware: V100
  229. backend: PyTorch
  230. batch size: 1
  231. mode: FP32
  232. resolution: (800, 1333)
  233. Epochs: 12
  234. Results:
  235. - Task: Object Detection
  236. Dataset: COCO
  237. Metrics:
  238. box AP: 43.8
  239. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco/cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200130-2f1fca44.pth
  240. - Name: cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco
  241. In Collection: Deformable Convolutional Networks
  242. Config: configs/dcn/cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py
  243. Metadata:
  244. Training Memory (GB): 6.4
  245. inference time (ms/im):
  246. - value: 90.91
  247. hardware: V100
  248. backend: PyTorch
  249. batch size: 1
  250. mode: FP32
  251. resolution: (800, 1333)
  252. Epochs: 12
  253. Results:
  254. - Task: Object Detection
  255. Dataset: COCO
  256. Metrics:
  257. box AP: 45.0
  258. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco/cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200203-3b2f0594.pth
  259. - Name: cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco
  260. In Collection: Deformable Convolutional Networks
  261. Config: configs/dcn/cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py
  262. Metadata:
  263. Training Memory (GB): 6.0
  264. inference time (ms/im):
  265. - value: 100
  266. hardware: V100
  267. backend: PyTorch
  268. batch size: 1
  269. mode: FP32
  270. resolution: (800, 1333)
  271. Epochs: 12
  272. Results:
  273. - Task: Object Detection
  274. Dataset: COCO
  275. Metrics:
  276. box AP: 44.4
  277. - Task: Instance Segmentation
  278. Dataset: COCO
  279. Metrics:
  280. mask AP: 38.6
  281. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco/cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200202-42e767a2.pth
  282. - Name: cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco
  283. In Collection: Deformable Convolutional Networks
  284. Config: configs/dcn/cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py
  285. Metadata:
  286. Training Memory (GB): 8.0
  287. inference time (ms/im):
  288. - value: 116.28
  289. hardware: V100
  290. backend: PyTorch
  291. batch size: 1
  292. mode: FP32
  293. resolution: (800, 1333)
  294. Epochs: 12
  295. Results:
  296. - Task: Object Detection
  297. Dataset: COCO
  298. Metrics:
  299. box AP: 45.8
  300. - Task: Instance Segmentation
  301. Dataset: COCO
  302. Metrics:
  303. mask AP: 39.7
  304. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco/cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200204-df0c5f10.pth
  305. - Name: cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco
  306. In Collection: Deformable Convolutional Networks
  307. Config: configs/dcn/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py
  308. Metadata:
  309. Training Memory (GB): 9.2
  310. Epochs: 12
  311. Results:
  312. - Task: Object Detection
  313. Dataset: COCO
  314. Metrics:
  315. box AP: 47.3
  316. - Task: Instance Segmentation
  317. Dataset: COCO
  318. Metrics:
  319. mask AP: 41.1
  320. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco-e75f90c8.pth

No Description

Contributors (3)