|
123456789101112131415161718192021222324252627282930313233 |
- # CornerNet
-
- ## Introduction
-
- <!-- [ALGORITHM] -->
-
- ```latex
- @inproceedings{law2018cornernet,
- title={Cornernet: Detecting objects as paired keypoints},
- author={Law, Hei and Deng, Jia},
- booktitle={15th European Conference on Computer Vision, ECCV 2018},
- pages={765--781},
- year={2018},
- organization={Springer Verlag}
- }
- ```
-
- ## Results and models
-
- | Backbone | Batch Size | Step/Total Epochs | Mem (GB) | Inf time (fps) | box AP | Config | Download |
- | :-------------: | :--------: |:----------------: | :------: | :------------: | :----: | :------: | :--------: |
- | HourglassNet-104 | [10 x 5](./cornernet_hourglass104_mstest_10x5_210e_coco.py) | 180/210 | 13.9 | 4.2 | 41.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cornernet/cornernet_hourglass104_mstest_10x5_210e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cornernet/cornernet_hourglass104_mstest_10x5_210e_coco/cornernet_hourglass104_mstest_10x5_210e_coco_20200824_185720-5fefbf1c.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cornernet/cornernet_hourglass104_mstest_10x5_210e_coco/cornernet_hourglass104_mstest_10x5_210e_coco_20200824_185720.log.json) |
- | HourglassNet-104 | [8 x 6](./cornernet_hourglass104_mstest_8x6_210e_coco.py) | 180/210 | 15.9 | 4.2 | 41.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cornernet/cornernet_hourglass104_mstest_8x6_210e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cornernet/cornernet_hourglass104_mstest_8x6_210e_coco/cornernet_hourglass104_mstest_8x6_210e_coco_20200825_150618-79b44c30.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cornernet/cornernet_hourglass104_mstest_8x6_210e_coco/cornernet_hourglass104_mstest_8x6_210e_coco_20200825_150618.log.json) |
- | HourglassNet-104 | [32 x 3](./cornernet_hourglass104_mstest_32x3_210e_coco.py) | 180/210 | 9.5 | 3.9 | 40.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cornernet/cornernet_hourglass104_mstest_32x3_210e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cornernet/cornernet_hourglass104_mstest_32x3_210e_coco/cornernet_hourglass104_mstest_32x3_210e_coco_20200819_203110-1efaea91.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cornernet/cornernet_hourglass104_mstest_32x3_210e_coco/cornernet_hourglass104_mstest_32x3_210e_coco_20200819_203110.log.json) |
-
- Note:
-
- - TTA setting is single-scale and `flip=True`.
- - Experiments with `images_per_gpu=6` are conducted on Tesla V100-SXM2-32GB, `images_per_gpu=3` are conducted on GeForce GTX 1080 Ti.
- - Here are the descriptions of each experiment setting:
- - 10 x 5: 10 GPUs with 5 images per gpu. This is the same setting as that reported in the original paper.
- - 8 x 6: 8 GPUs with 6 images per gpu. The total batchsize is similar to paper and only need 1 node to train.
- - 32 x 3: 32 GPUs with 3 images per gpu. The default setting for 1080TI and need 4 nodes to train.
|