You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 3.0 kB

2 years ago
123456789101112131415161718192021222324252627282930313233
  1. # CornerNet
  2. ## Introduction
  3. <!-- [ALGORITHM] -->
  4. ```latex
  5. @inproceedings{law2018cornernet,
  6. title={Cornernet: Detecting objects as paired keypoints},
  7. author={Law, Hei and Deng, Jia},
  8. booktitle={15th European Conference on Computer Vision, ECCV 2018},
  9. pages={765--781},
  10. year={2018},
  11. organization={Springer Verlag}
  12. }
  13. ```
  14. ## Results and models
  15. | Backbone | Batch Size | Step/Total Epochs | Mem (GB) | Inf time (fps) | box AP | Config | Download |
  16. | :-------------: | :--------: |:----------------: | :------: | :------------: | :----: | :------: | :--------: |
  17. | HourglassNet-104 | [10 x 5](./cornernet_hourglass104_mstest_10x5_210e_coco.py) | 180/210 | 13.9 | 4.2 | 41.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cornernet/cornernet_hourglass104_mstest_10x5_210e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cornernet/cornernet_hourglass104_mstest_10x5_210e_coco/cornernet_hourglass104_mstest_10x5_210e_coco_20200824_185720-5fefbf1c.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/cornernet/cornernet_hourglass104_mstest_10x5_210e_coco/cornernet_hourglass104_mstest_10x5_210e_coco_20200824_185720.log.json) |
  18. | HourglassNet-104 | [8 x 6](./cornernet_hourglass104_mstest_8x6_210e_coco.py) | 180/210 | 15.9 | 4.2 | 41.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cornernet/cornernet_hourglass104_mstest_8x6_210e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cornernet/cornernet_hourglass104_mstest_8x6_210e_coco/cornernet_hourglass104_mstest_8x6_210e_coco_20200825_150618-79b44c30.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/cornernet/cornernet_hourglass104_mstest_8x6_210e_coco/cornernet_hourglass104_mstest_8x6_210e_coco_20200825_150618.log.json) |
  19. | HourglassNet-104 | [32 x 3](./cornernet_hourglass104_mstest_32x3_210e_coco.py) | 180/210 | 9.5 | 3.9 | 40.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cornernet/cornernet_hourglass104_mstest_32x3_210e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cornernet/cornernet_hourglass104_mstest_32x3_210e_coco/cornernet_hourglass104_mstest_32x3_210e_coco_20200819_203110-1efaea91.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/cornernet/cornernet_hourglass104_mstest_32x3_210e_coco/cornernet_hourglass104_mstest_32x3_210e_coco_20200819_203110.log.json) |
  20. Note:
  21. - TTA setting is single-scale and `flip=True`.
  22. - Experiments with `images_per_gpu=6` are conducted on Tesla V100-SXM2-32GB, `images_per_gpu=3` are conducted on GeForce GTX 1080 Ti.
  23. - Here are the descriptions of each experiment setting:
  24. - 10 x 5: 10 GPUs with 5 images per gpu. This is the same setting as that reported in the original paper.
  25. - 8 x 6: 8 GPUs with 6 images per gpu. The total batchsize is similar to paper and only need 1 node to train.
  26. - 32 x 3: 32 GPUs with 3 images per gpu. The default setting for 1080TI and need 4 nodes to train.

No Description

Contributors (3)