You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 2.1 kB

2 years ago
123456789101112131415161718192021222324252627282930
  1. # CenterNet
  2. ## Introduction
  3. <!-- [ALGORITHM] -->
  4. ```latex
  5. @article{zhou2019objects,
  6. title={Objects as Points},
  7. author={Zhou, Xingyi and Wang, Dequan and Kr{\"a}henb{\"u}hl, Philipp},
  8. booktitle={arXiv preprint arXiv:1904.07850},
  9. year={2019}
  10. }
  11. ```
  12. ## Results and models
  13. | Backbone | DCN | Mem (GB) | Box AP | Flip box AP| Config | Download |
  14. | :-------------: | :--------: |:----------------: | :------: | :------------: | :----: | :----: |
  15. | ResNet-18 | N | 3.45 | 25.9 | 27.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/centernet/centernet_resnet18_140e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/centernet/centernet_resnet18_140e_coco/centernet_resnet18_140e_coco_20210705_093630-bb5b3bf7.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/centernet/centernet_resnet18_140e_coco/centernet_resnet18_140e_coco_20210705_093630.log.json) |
  16. | ResNet-18 | Y | 3.47 | 29.5 | 30.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/centernet/centernet_resnet18_dcnv2_140e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/centernet/centernet_resnet18_dcnv2_140e_coco/centernet_resnet18_dcnv2_140e_coco_20210702_155131-c8cd631f.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/centernet/centernet_resnet18_dcnv2_140e_coco/centernet_resnet18_dcnv2_140e_coco_20210702_155131.log.json) |
  17. Note:
  18. - Flip box AP setting is single-scale and `flip=True`.
  19. - Due to complex data enhancement, we find that the performance is unstable and may fluctuate by about 0.4 mAP. mAP 29.4 ~ 29.8 is acceptable in ResNet-18-DCNv2.
  20. - Compared to the source code, we refer to [CenterNet-Better](https://github.com/FateScript/CenterNet-better), and make the following changes
  21. - fix wrong image mean and variance in image normalization to be compatible with the pre-trained backbone.
  22. - Use SGD rather than ADAM optimizer and add warmup and grad clip.
  23. - Use DistributedDataParallel as other models in MMDetection rather than using DataParallel.

No Description

Contributors (3)