You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

AD_yh_test05.py 4.8 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148
  1. _base_ = [
  2. '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
  3. ]
  4. norm_cfg = dict(type='SyncBN', requires_grad=True)
  5. model = dict(
  6. type='ATSS',
  7. backbone=dict(
  8. type='ResNeXt',
  9. depth=101,
  10. groups=64,
  11. base_width=4,
  12. num_stages=4,
  13. out_indices=(0, 1, 2, 3),
  14. frozen_stages=1,
  15. norm_cfg=norm_cfg,
  16. dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
  17. stage_with_dcn=(False, True, True, True),
  18. style='pytorch',
  19. init_cfg=dict(
  20. type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')),
  21. neck=dict(
  22. type='FPN',
  23. in_channels=[256, 512, 1024, 2048],
  24. out_channels=256,
  25. start_level=1,
  26. add_extra_convs='on_output',
  27. num_outs=5),
  28. bbox_head=dict(
  29. type='ATSSHead',
  30. num_classes=2,
  31. in_channels=256,
  32. stacked_convs=4,
  33. feat_channels=256,
  34. anchor_generator=dict(
  35. type='AnchorGenerator',
  36. ratios=[1.0],
  37. octave_base_scale=8,
  38. scales_per_octave=1,
  39. strides=[8, 16, 32, 64, 128]),
  40. bbox_coder=dict(
  41. type='DeltaXYWHBBoxCoder',
  42. target_means=[.0, .0, .0, .0],
  43. target_stds=[0.1, 0.1, 0.2, 0.2]),
  44. loss_cls=dict(
  45. type='FocalLoss',
  46. use_sigmoid=True,
  47. gamma=2.0,
  48. alpha=0.25,
  49. loss_weight=1.0),
  50. loss_bbox=dict(type='GIoULoss', loss_weight=2.0),
  51. loss_centerness=dict(
  52. type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
  53. # training and testing settings
  54. train_cfg=dict(
  55. assigner=dict(type='ATSSAssigner', topk=9),
  56. allowed_border=-1,
  57. pos_weight=-1,
  58. debug=False),
  59. test_cfg=dict(
  60. nms_pre=1000,
  61. min_bbox_size=0,
  62. score_thr=0.05,
  63. nms=dict(type='nms', iou_threshold=0.6),
  64. max_per_img=100))
  65. dataset_type = 'CocoDataset'
  66. classes = ('zangwuyise', 'guashang')
  67. img_norm_cfg = dict(
  68. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  69. train_pipeline = [
  70. dict(type='LoadImageFromFile'),
  71. dict(type='LoadAnnotations', with_bbox=True),
  72. dict(
  73. type='Resize',
  74. img_scale=[(1024, 1024), (1280, 1280)],
  75. multiscale_mode='value',
  76. keep_ratio=True),
  77. dict(type='RandomFlip', flip_ratio=[0.2,0.2,0.2], direction=['horizontal', 'vertical', 'diagonal']),
  78. dict(type='BrightnessTransform', level=5, prob=0.5),
  79. dict(type='ContrastTransform', level=5, prob=0.5),
  80. dict(type='RandomShift', shift_ratio=0.5),
  81. dict(type='MinIoURandomCrop', min_ious=(0.5, 0.7, 0.9), min_crop_size=0.5),
  82. dict(type='Normalize', **img_norm_cfg),
  83. dict(type='Pad', size_divisor=32),
  84. dict(type='DefaultFormatBundle'),
  85. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
  86. ]
  87. test_pipeline = [
  88. dict(type='LoadImageFromFile'),
  89. dict(
  90. type='MultiScaleFlipAug',
  91. img_scale=[(1280, 1280)],
  92. flip=False,
  93. transforms=[
  94. dict(type='Resize', keep_ratio=True),
  95. dict(type='RandomFlip'),
  96. dict(type='Normalize', **img_norm_cfg),
  97. dict(type='Pad', size_divisor=32),
  98. dict(type='ImageToTensor', keys=['img']),
  99. dict(type='Collect', keys=['img']),
  100. ])
  101. ]
  102. data = dict(
  103. samples_per_gpu=2,
  104. workers_per_gpu=8,
  105. train=dict(
  106. type=dataset_type,
  107. img_prefix='/home/shanwei-luo/teamdata/surf0413/images/',
  108. classes=classes,
  109. ann_file='/home/shanwei-luo/teamdata/surf0413/annotations/train_cat_mode.json',
  110. pipeline=train_pipeline),
  111. val=dict(
  112. type=dataset_type,
  113. img_prefix='/home/shanwei-luo/teamdata/surf0413/images/',
  114. classes=classes,
  115. ann_file='/home/shanwei-luo/teamdata/surf0413/annotations/val_cat_mode.json',
  116. pipeline=test_pipeline),
  117. test=dict(
  118. type=dataset_type,
  119. img_prefix='/home/shanwei-luo/teamdata/surf0413/images/',
  120. classes=classes,
  121. ann_file='/home/shanwei-luo/teamdata/surf0413/annotations/val_cat_mode.json',
  122. pipeline=test_pipeline))
  123. # optimizer
  124. optimizer = dict(type='SGD', lr=0.001, momentum=0.9, weight_decay=0.0001)
  125. optimizer_config = dict(grad_clip=None)
  126. # learning policy
  127. lr_config = dict(
  128. policy='CosineAnnealing',
  129. warmup='linear',
  130. warmup_iters=1000,
  131. warmup_ratio=1.0 / 10,
  132. min_lr_ratio=1e-5)
  133. runner = dict(type='EpochBasedRunner', max_epochs=40)
  134. evaluation = dict(interval=2, metric='bbox')
  135. checkpoint_config = dict(interval=2)
  136. log_config = dict(
  137. interval=20,
  138. hooks=[
  139. dict(type='TextLoggerHook'),
  140. # dict(type='TensorboardLoggerHook')
  141. ])

No Description

Contributors (3)