You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

AD_pcb_test06.py 5.8 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157
  1. _base_ = '../cascade_rcnn/cascade_rcnn_r101_fpn_1x_coco.py'
  2. model = dict(
  3. backbone=dict(
  4. type='DetectoRS_ResNet',
  5. conv_cfg=dict(type='ConvAWS'),
  6. sac=dict(type='SAC', use_deform=True),
  7. stage_with_sac=(False, True, True, True),
  8. output_img=True),
  9. neck=dict(
  10. type='RFP',
  11. rfp_steps=2,
  12. aspp_out_channels=64,
  13. aspp_dilations=(1, 3, 6, 1),
  14. rfp_backbone=dict(
  15. rfp_inplanes=256,
  16. type='DetectoRS_ResNet',
  17. depth=101,
  18. num_stages=4,
  19. out_indices=(0, 1, 2, 3),
  20. frozen_stages=1,
  21. norm_cfg=dict(type='BN', requires_grad=True),
  22. norm_eval=True,
  23. conv_cfg=dict(type='ConvAWS'),
  24. sac=dict(type='SAC', use_deform=True),
  25. stage_with_sac=(False, True, True, True),
  26. pretrained='torchvision://resnet101',
  27. style='pytorch')),
  28. roi_head=dict(
  29. bbox_head=[
  30. dict(
  31. type='Shared2FCBBoxHead',
  32. in_channels=256,
  33. fc_out_channels=1024,
  34. roi_feat_size=7,
  35. num_classes=5,
  36. bbox_coder=dict(
  37. type='DeltaXYWHBBoxCoder',
  38. target_means=[0., 0., 0., 0.],
  39. target_stds=[0.1, 0.1, 0.2, 0.2]),
  40. reg_class_agnostic=True,
  41. loss_cls=dict(
  42. type='CrossEntropyLoss',
  43. use_sigmoid=False,
  44. loss_weight=1.0),
  45. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  46. loss_weight=1.0)),
  47. dict(
  48. type='Shared2FCBBoxHead',
  49. in_channels=256,
  50. fc_out_channels=1024,
  51. roi_feat_size=7,
  52. num_classes=5,
  53. bbox_coder=dict(
  54. type='DeltaXYWHBBoxCoder',
  55. target_means=[0., 0., 0., 0.],
  56. target_stds=[0.05, 0.05, 0.1, 0.1]),
  57. reg_class_agnostic=True,
  58. loss_cls=dict(
  59. type='CrossEntropyLoss',
  60. use_sigmoid=False,
  61. loss_weight=1.0),
  62. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  63. loss_weight=1.0)),
  64. dict(
  65. type='Shared2FCBBoxHead',
  66. in_channels=256,
  67. fc_out_channels=1024,
  68. roi_feat_size=7,
  69. num_classes=5,
  70. bbox_coder=dict(
  71. type='DeltaXYWHBBoxCoder',
  72. target_means=[0., 0., 0., 0.],
  73. target_stds=[0.033, 0.033, 0.067, 0.067]),
  74. reg_class_agnostic=True,
  75. loss_cls=dict(
  76. type='CrossEntropyLoss',
  77. use_sigmoid=False,
  78. loss_weight=1.0),
  79. loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
  80. ]))
  81. dataset_type = 'CocoDataset'
  82. classes = ('jinshuyiwu','loutong','fanghanyiwu','yanghua','hong')
  83. img_norm_cfg = dict(
  84. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  85. train_pipeline = [
  86. dict(type='LoadImageFromFile'),
  87. dict(type='LoadAnnotations', with_bbox=True),
  88. dict(
  89. type='Resize',
  90. img_scale=[(200, 200), (300, 300)],
  91. multiscale_mode='value',
  92. keep_ratio=True),
  93. dict(type='RandomFlip', flip_ratio=[0.2,0.2,0.2], direction=['horizontal', 'vertical', 'diagonal']),
  94. dict(type='BrightnessTransform', level=5, prob=0.5),
  95. dict(type='ContrastTransform', level=5, prob=0.5),
  96. dict(type='RandomShift', shift_ratio=0.5),
  97. dict(type='MinIoURandomCrop', min_ious=(0.5, 0.7, 0.9), min_crop_size=0.8),
  98. dict(type='Normalize', **img_norm_cfg),
  99. dict(type='Pad', size_divisor=32),
  100. dict(type='DefaultFormatBundle'),
  101. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
  102. ]
  103. test_pipeline = [
  104. dict(type='LoadImageFromFile'),
  105. dict(
  106. type='MultiScaleFlipAug',
  107. img_scale=[(200, 200), (300, 300)],
  108. flip=True,
  109. transforms=[
  110. dict(type='Resize', keep_ratio=True),
  111. dict(type='RandomFlip'),
  112. dict(type='Normalize', **img_norm_cfg),
  113. dict(type='Pad', size_divisor=32),
  114. dict(type='ImageToTensor', keys=['img']),
  115. dict(type='Collect', keys=['img']),
  116. ])
  117. ]
  118. data = dict(
  119. samples_per_gpu=16,
  120. workers_per_gpu=8,
  121. train=dict(
  122. type=dataset_type,
  123. img_prefix='/home/shanwei-luo/userdata/datasets/AD_pcb_detect/images/train/',
  124. classes=classes,
  125. ann_file='/home/shanwei-luo/userdata/datasets/AD_pcb_detect/annotations/train_new.json',
  126. pipeline=train_pipeline),
  127. val=dict(
  128. type=dataset_type,
  129. img_prefix='/home/shanwei-luo/userdata/datasets/AD_pcb_detect/images/val/',
  130. classes=classes,
  131. ann_file='/home/shanwei-luo/userdata/datasets/AD_pcb_detect/annotations/val_new.json',
  132. pipeline=test_pipeline),
  133. test=dict(
  134. type=dataset_type,
  135. img_prefix='/home/shanwei-luo/userdata/datasets/AD_pcb_detect/images/val/',
  136. classes=classes,
  137. ann_file='/home/shanwei-luo/userdata/datasets/AD_pcb_detect/annotations/val_new.json',
  138. pipeline=test_pipeline))
  139. # optimizer
  140. optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
  141. optimizer_config = dict(grad_clip=None)
  142. # learning policy
  143. lr_config = dict(
  144. policy='CosineAnnealing',
  145. warmup='linear',
  146. warmup_iters=2000,
  147. warmup_ratio=1.0 / 10,
  148. min_lr_ratio=1e-5)
  149. runner = dict(type='EpochBasedRunner', max_epochs=40)
  150. evaluation = dict(interval=5, metric='bbox')

No Description

Contributors (3)