You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

AD_dsxw_test48.py 5.4 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145
  1. _base_ = '../cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco.py'
  2. norm_cfg = dict(type='SyncBN', requires_grad=True)
  3. model = dict(
  4. backbone=dict(
  5. norm_cfg=norm_cfg),
  6. neck=dict(
  7. type='FPN',#FPN PAFPN
  8. in_channels=[256, 512, 1024, 2048],
  9. out_channels=256,
  10. num_outs=5),
  11. roi_head=dict(
  12. bbox_head=[
  13. dict(
  14. type='Shared2FCBBoxHead',
  15. in_channels=256,
  16. fc_out_channels=1024,
  17. roi_feat_size=7,
  18. num_classes=11,
  19. bbox_coder=dict(
  20. type='DeltaXYWHBBoxCoder',
  21. target_means=[0., 0., 0., 0.],
  22. target_stds=[0.1, 0.1, 0.2, 0.2]),
  23. reg_class_agnostic=True,
  24. loss_cls=dict(
  25. type='FocalLoss',
  26. use_sigmoid=True,
  27. gamma=2.0,
  28. alpha=0.25,
  29. loss_weight=1.0),
  30. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  31. loss_weight=1.0)),
  32. dict(
  33. type='Shared2FCBBoxHead',
  34. in_channels=256,
  35. fc_out_channels=1024,
  36. roi_feat_size=7,
  37. num_classes=11,
  38. bbox_coder=dict(
  39. type='DeltaXYWHBBoxCoder',
  40. target_means=[0., 0., 0., 0.],
  41. target_stds=[0.05, 0.05, 0.1, 0.1]),
  42. reg_class_agnostic=True,
  43. loss_cls=dict(
  44. type='FocalLoss',
  45. use_sigmoid=True,
  46. gamma=2.0,
  47. alpha=0.25,
  48. loss_weight=1.0),
  49. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  50. loss_weight=1.0)),
  51. dict(
  52. type='Shared2FCBBoxHead',
  53. in_channels=256,
  54. fc_out_channels=1024,
  55. roi_feat_size=7,
  56. num_classes=11,
  57. bbox_coder=dict(
  58. type='DeltaXYWHBBoxCoder',
  59. target_means=[0., 0., 0., 0.],
  60. target_stds=[0.033, 0.033, 0.067, 0.067]),
  61. reg_class_agnostic=True,
  62. loss_cls=dict(
  63. type='FocalLoss',
  64. use_sigmoid=True,
  65. gamma=2.0,
  66. alpha=0.25,
  67. loss_weight=1.0),
  68. loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
  69. ]))
  70. dataset_type = 'CocoDataset'
  71. classes = ('yiwei','loujian','celi','libei','fantie','lianxi','duojian','shunjian','shaoxi','jiahan','yiwu')
  72. img_norm_cfg = dict(
  73. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  74. train_pipeline = [
  75. dict(type='LoadImageFromFile'),
  76. dict(type='LoadAnnotations', with_bbox=True),
  77. dict(
  78. type='Resize',
  79. img_scale=[(400, 400), (500, 500)],
  80. multiscale_mode='value',
  81. keep_ratio=True),
  82. dict(type='RandomFlip', flip_ratio=[0.2,0.2,0.2], direction=['horizontal', 'vertical', 'diagonal']),
  83. dict(type='BrightnessTransform', level=5, prob=0.5),
  84. dict(type='ContrastTransform', level=5, prob=0.5),
  85. dict(type='RandomShift', shift_ratio=0.5),
  86. dict(type='MinIoURandomCrop', min_ious=(0.5, 0.7, 0.9), min_crop_size=0.8),
  87. dict(type='Normalize', **img_norm_cfg),
  88. dict(type='Pad', size_divisor=32),
  89. dict(type='DefaultFormatBundle'),
  90. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
  91. ]
  92. test_pipeline = [
  93. dict(type='LoadImageFromFile'),
  94. dict(
  95. type='MultiScaleFlipAug',
  96. img_scale=[(400, 400)],
  97. flip=False,
  98. transforms=[
  99. dict(type='Resize', keep_ratio=True),
  100. dict(type='RandomFlip'),
  101. dict(type='Normalize', **img_norm_cfg),
  102. dict(type='Pad', size_divisor=32),
  103. dict(type='ImageToTensor', keys=['img']),
  104. dict(type='Collect', keys=['img']),
  105. ])
  106. ]
  107. data = dict(
  108. samples_per_gpu=16,
  109. workers_per_gpu=8,
  110. train=dict(
  111. type=dataset_type,
  112. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v8/dsxw_train/images/',
  113. classes=classes,
  114. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v8/dsxw_train/annotations/train.json',
  115. pipeline=train_pipeline),
  116. val=dict(
  117. type=dataset_type,
  118. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v8/dsxw_test/images/',
  119. classes=classes,
  120. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v8/dsxw_test/annotations/test.json',
  121. pipeline=test_pipeline),
  122. test=dict(
  123. type=dataset_type,
  124. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v8/dsxw_test/images/',
  125. classes=classes,
  126. ann_file='/home/shanwei-luo/userdata/datasetsdsxw_dataset_v8/dsxw_test/annotations/test.json',
  127. pipeline=test_pipeline))
  128. # optimizer
  129. optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
  130. optimizer_config = dict(grad_clip=None)
  131. # learning policy
  132. lr_config = dict(
  133. policy='CosineAnnealing',
  134. warmup='linear',
  135. warmup_iters=5000,
  136. warmup_ratio=1.0 / 10,
  137. min_lr_ratio=1e-5)
  138. runner = dict(type='EpochBasedRunner', max_epochs=120)
  139. evaluation = dict(interval=5, metric='bbox')

No Description

Contributors (3)