You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

AD_dsxw_test44.py 5.8 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158
  1. _base_ = '../cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco.py'
  2. model = dict(
  3. backbone=dict(
  4. dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
  5. stage_with_dcn=(False, True, True, True)),
  6. neck=dict(
  7. type='FPN_CARAFE',
  8. in_channels=[256, 512, 1024, 2048],
  9. out_channels=256,
  10. num_outs=5,
  11. start_level=0,
  12. end_level=-1,
  13. norm_cfg=None,
  14. act_cfg=None,
  15. order=('conv', 'norm', 'act'),
  16. upsample_cfg=dict(
  17. type='carafe',
  18. up_kernel=5,
  19. up_group=1,
  20. encoder_kernel=3,
  21. encoder_dilation=1,
  22. compressed_channels=64)),
  23. roi_head=dict(
  24. bbox_head=[
  25. dict(
  26. type='Shared2FCBBoxHead',
  27. in_channels=256,
  28. fc_out_channels=1024,
  29. roi_feat_size=7,
  30. num_classes=11,
  31. bbox_coder=dict(
  32. type='DeltaXYWHBBoxCoder',
  33. target_means=[0., 0., 0., 0.],
  34. target_stds=[0.1, 0.1, 0.2, 0.2]),
  35. reg_class_agnostic=True,
  36. loss_cls=dict(
  37. type='FocalLoss',
  38. use_sigmoid=True,
  39. gamma=2.0,
  40. alpha=0.25,
  41. loss_weight=1.0),
  42. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  43. loss_weight=1.0)),
  44. dict(
  45. type='Shared2FCBBoxHead',
  46. in_channels=256,
  47. fc_out_channels=1024,
  48. roi_feat_size=7,
  49. num_classes=11,
  50. bbox_coder=dict(
  51. type='DeltaXYWHBBoxCoder',
  52. target_means=[0., 0., 0., 0.],
  53. target_stds=[0.05, 0.05, 0.1, 0.1]),
  54. reg_class_agnostic=True,
  55. loss_cls=dict(
  56. type='FocalLoss',
  57. use_sigmoid=True,
  58. gamma=2.0,
  59. alpha=0.25,
  60. loss_weight=1.0),
  61. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  62. loss_weight=1.0)),
  63. dict(
  64. type='Shared2FCBBoxHead',
  65. in_channels=256,
  66. fc_out_channels=1024,
  67. roi_feat_size=7,
  68. num_classes=11,
  69. bbox_coder=dict(
  70. type='DeltaXYWHBBoxCoder',
  71. target_means=[0., 0., 0., 0.],
  72. target_stds=[0.033, 0.033, 0.067, 0.067]),
  73. reg_class_agnostic=True,
  74. loss_cls=dict(
  75. type='FocalLoss',
  76. use_sigmoid=True,
  77. gamma=2.0,
  78. alpha=0.25,
  79. loss_weight=1.0),
  80. loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
  81. ]))
  82. dataset_type = 'CocoDataset'
  83. classes = ('yiwei','loujian','celi','libei','fantie','lianxi','duojian','shunjian','shaoxi','jiahan','yiwu')
  84. img_norm_cfg = dict(
  85. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  86. train_pipeline = [
  87. dict(type='LoadImageFromFile'),
  88. dict(type='LoadAnnotations', with_bbox=True),
  89. dict(
  90. type='Resize',
  91. img_scale=[(400, 400), (500, 500)],
  92. multiscale_mode='value',
  93. keep_ratio=True),
  94. dict(type='RandomFlip', flip_ratio=[0.2,0.2,0.2], direction=['horizontal', 'vertical', 'diagonal']),
  95. dict(type='BrightnessTransform', level=5, prob=0.5),
  96. dict(type='ContrastTransform', level=5, prob=0.5),
  97. dict(type='RandomShift', shift_ratio=0.5),
  98. dict(type='MinIoURandomCrop', min_ious=(0.5, 0.7, 0.9), min_crop_size=0.8),
  99. dict(type='Normalize', **img_norm_cfg),
  100. dict(type='Pad', size_divisor=32),
  101. dict(type='DefaultFormatBundle'),
  102. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
  103. ]
  104. test_pipeline = [
  105. dict(type='LoadImageFromFile'),
  106. dict(
  107. type='MultiScaleFlipAug',
  108. img_scale=[(400, 400)],
  109. flip=False,
  110. transforms=[
  111. dict(type='Resize', keep_ratio=True),
  112. dict(type='RandomFlip'),
  113. dict(type='Normalize', **img_norm_cfg),
  114. dict(type='Pad', size_divisor=32),
  115. dict(type='ImageToTensor', keys=['img']),
  116. dict(type='Collect', keys=['img']),
  117. ])
  118. ]
  119. data = dict(
  120. samples_per_gpu=16,
  121. workers_per_gpu=8,
  122. train=dict(
  123. type=dataset_type,
  124. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v8/dsxw_train/images/',
  125. classes=classes,
  126. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v8/dsxw_train/annotations/train.json',
  127. pipeline=train_pipeline),
  128. val=dict(
  129. type=dataset_type,
  130. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v8/dsxw_test/images/',
  131. classes=classes,
  132. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v8/dsxw_test/annotations/test.json',
  133. pipeline=test_pipeline),
  134. test=dict(
  135. type=dataset_type,
  136. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v8/dsxw_test/images/',
  137. classes=classes,
  138. ann_file='/home/shanwei-luo/userdata/datasetsdsxw_dataset_v8/dsxw_test/annotations/test.json',
  139. pipeline=test_pipeline))
  140. # optimizer
  141. optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
  142. optimizer_config = dict(grad_clip=None)
  143. # learning policy
  144. lr_config = dict(
  145. policy='CosineAnnealing',
  146. warmup='linear',
  147. warmup_iters=5000,
  148. warmup_ratio=1.0 / 10,
  149. min_lr_ratio=1e-5)
  150. runner = dict(type='EpochBasedRunner', max_epochs=60)
  151. evaluation = dict(interval=5, metric='bbox')

No Description

Contributors (3)