You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

AD_dsxw_test40.py 5.6 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155
  1. _base_ = '../cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco.py'
  2. model = dict(
  3. neck=dict(
  4. type='FPN_CARAFE',
  5. in_channels=[256, 512, 1024, 2048],
  6. out_channels=256,
  7. num_outs=5,
  8. start_level=0,
  9. end_level=-1,
  10. norm_cfg=None,
  11. act_cfg=None,
  12. order=('conv', 'norm', 'act'),
  13. upsample_cfg=dict(
  14. type='carafe',
  15. up_kernel=5,
  16. up_group=1,
  17. encoder_kernel=3,
  18. encoder_dilation=1,
  19. compressed_channels=64)),
  20. roi_head=dict(
  21. bbox_head=[
  22. dict(
  23. type='Shared2FCBBoxHead',
  24. in_channels=256,
  25. fc_out_channels=1024,
  26. roi_feat_size=7,
  27. num_classes=11,
  28. bbox_coder=dict(
  29. type='DeltaXYWHBBoxCoder',
  30. target_means=[0., 0., 0., 0.],
  31. target_stds=[0.1, 0.1, 0.2, 0.2]),
  32. reg_class_agnostic=True,
  33. loss_cls=dict(
  34. type='FocalLoss',
  35. use_sigmoid=True,
  36. gamma=2.0,
  37. alpha=0.25,
  38. loss_weight=1.0),
  39. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  40. loss_weight=1.0)),
  41. dict(
  42. type='Shared2FCBBoxHead',
  43. in_channels=256,
  44. fc_out_channels=1024,
  45. roi_feat_size=7,
  46. num_classes=11,
  47. bbox_coder=dict(
  48. type='DeltaXYWHBBoxCoder',
  49. target_means=[0., 0., 0., 0.],
  50. target_stds=[0.05, 0.05, 0.1, 0.1]),
  51. reg_class_agnostic=True,
  52. loss_cls=dict(
  53. type='FocalLoss',
  54. use_sigmoid=True,
  55. gamma=2.0,
  56. alpha=0.25,
  57. loss_weight=1.0),
  58. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  59. loss_weight=1.0)),
  60. dict(
  61. type='Shared2FCBBoxHead',
  62. in_channels=256,
  63. fc_out_channels=1024,
  64. roi_feat_size=7,
  65. num_classes=11,
  66. bbox_coder=dict(
  67. type='DeltaXYWHBBoxCoder',
  68. target_means=[0., 0., 0., 0.],
  69. target_stds=[0.033, 0.033, 0.067, 0.067]),
  70. reg_class_agnostic=True,
  71. loss_cls=dict(
  72. type='FocalLoss',
  73. use_sigmoid=True,
  74. gamma=2.0,
  75. alpha=0.25,
  76. loss_weight=1.0),
  77. loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
  78. ]))
  79. dataset_type = 'CocoDataset'
  80. classes = ('yiwei','loujian','celi','libei','fantie','lianxi','duojian','shunjian','shaoxi','jiahan','yiwu')
  81. img_norm_cfg = dict(
  82. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  83. train_pipeline = [
  84. dict(type='LoadImageFromFile'),
  85. dict(type='LoadAnnotations', with_bbox=True),
  86. dict(
  87. type='Resize',
  88. img_scale=[(400, 400), (500, 500)],
  89. multiscale_mode='value',
  90. keep_ratio=True),
  91. dict(type='RandomFlip', flip_ratio=[0.2,0.2,0.2], direction=['horizontal', 'vertical', 'diagonal']),
  92. dict(type='BrightnessTransform', level=5, prob=0.5),
  93. dict(type='ContrastTransform', level=5, prob=0.5),
  94. dict(type='RandomShift', shift_ratio=0.5),
  95. dict(type='MinIoURandomCrop', min_ious=(0.5, 0.7, 0.9), min_crop_size=0.8),
  96. dict(type='Normalize', **img_norm_cfg),
  97. dict(type='Pad', size_divisor=32),
  98. dict(type='DefaultFormatBundle'),
  99. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
  100. ]
  101. test_pipeline = [
  102. dict(type='LoadImageFromFile'),
  103. dict(
  104. type='MultiScaleFlipAug',
  105. img_scale=[(400, 400)],
  106. flip=False,
  107. transforms=[
  108. dict(type='Resize', keep_ratio=True),
  109. dict(type='RandomFlip'),
  110. dict(type='Normalize', **img_norm_cfg),
  111. dict(type='Pad', size_divisor=32),
  112. dict(type='ImageToTensor', keys=['img']),
  113. dict(type='Collect', keys=['img']),
  114. ])
  115. ]
  116. data = dict(
  117. samples_per_gpu=16,
  118. workers_per_gpu=8,
  119. train=dict(
  120. type=dataset_type,
  121. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v8/dsxw_train/images/',
  122. classes=classes,
  123. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v8/dsxw_train/annotations/train.json',
  124. pipeline=train_pipeline),
  125. val=dict(
  126. type=dataset_type,
  127. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v8/dsxw_test/images/',
  128. classes=classes,
  129. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v8/dsxw_test/annotations/test.json',
  130. pipeline=test_pipeline),
  131. test=dict(
  132. type=dataset_type,
  133. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v8/dsxw_test/images/',
  134. classes=classes,
  135. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v8/dsxw_test/annotations/test.json',
  136. pipeline=test_pipeline))
  137. # optimizer
  138. optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
  139. optimizer_config = dict(grad_clip=None)
  140. # learning policy
  141. lr_config = dict(
  142. policy='CosineAnnealing',
  143. warmup='linear',
  144. warmup_iters=5000,
  145. warmup_ratio=1.0 / 10,
  146. min_lr_ratio=1e-5)
  147. runner = dict(type='EpochBasedRunner', max_epochs=60)
  148. evaluation = dict(interval=5, metric='bbox')

No Description

Contributors (3)