You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

AD_dsxw_test06.py 4.9 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132
  1. _base_ = '../cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco.py'
  2. model = dict(
  3. roi_head=dict(
  4. bbox_head=[
  5. dict(
  6. type='Shared2FCBBoxHead',
  7. in_channels=256,
  8. fc_out_channels=1024,
  9. roi_feat_size=7,
  10. num_classes=3,
  11. bbox_coder=dict(
  12. type='DeltaXYWHBBoxCoder',
  13. target_means=[0., 0., 0., 0.],
  14. target_stds=[0.1, 0.1, 0.2, 0.2]),
  15. reg_class_agnostic=True,
  16. loss_cls=dict(
  17. type='CrossEntropyLoss',
  18. use_sigmoid=False,
  19. loss_weight=1.0),
  20. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  21. loss_weight=1.0)),
  22. dict(
  23. type='Shared2FCBBoxHead',
  24. in_channels=256,
  25. fc_out_channels=1024,
  26. roi_feat_size=7,
  27. num_classes=3,
  28. bbox_coder=dict(
  29. type='DeltaXYWHBBoxCoder',
  30. target_means=[0., 0., 0., 0.],
  31. target_stds=[0.05, 0.05, 0.1, 0.1]),
  32. reg_class_agnostic=True,
  33. loss_cls=dict(
  34. type='CrossEntropyLoss',
  35. use_sigmoid=False,
  36. loss_weight=1.0),
  37. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  38. loss_weight=1.0)),
  39. dict(
  40. type='Shared2FCBBoxHead',
  41. in_channels=256,
  42. fc_out_channels=1024,
  43. roi_feat_size=7,
  44. num_classes=3,
  45. bbox_coder=dict(
  46. type='DeltaXYWHBBoxCoder',
  47. target_means=[0., 0., 0., 0.],
  48. target_stds=[0.033, 0.033, 0.067, 0.067]),
  49. reg_class_agnostic=True,
  50. loss_cls=dict(
  51. type='CrossEntropyLoss',
  52. use_sigmoid=False,
  53. loss_weight=1.0),
  54. loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
  55. ]))
  56. dataset_type = 'CocoDataset'
  57. classes = ('False_welding','Missing_parts','Displacement')
  58. img_norm_cfg = dict(
  59. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  60. train_pipeline = [
  61. dict(type='LoadImageFromFile'),
  62. dict(type='LoadAnnotations', with_bbox=True),
  63. dict(
  64. type='Resize',
  65. img_scale=[(400, 300), (500, 400)],
  66. multiscale_mode='value',
  67. keep_ratio=True),
  68. dict(type='RandomFlip', flip_ratio=[0.2,0.2,0.2], direction=['horizontal', 'vertical', 'diagonal']),
  69. dict(type='BrightnessTransform', level=5, prob=0.5),
  70. dict(type='ContrastTransform', level=5, prob=0.5),
  71. dict(type='RandomShift', shift_ratio=0.5),
  72. dict(type='MinIoURandomCrop', min_ious=(0.5, 0.7, 0.9), min_crop_size=0.8),
  73. dict(type='Normalize', **img_norm_cfg),
  74. dict(type='Pad', size_divisor=32),
  75. dict(type='DefaultFormatBundle'),
  76. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
  77. ]
  78. test_pipeline = [
  79. dict(type='LoadImageFromFile'),
  80. dict(
  81. type='MultiScaleFlipAug',
  82. img_scale=[(400, 300), (500, 400)],
  83. flip=True,
  84. transforms=[
  85. dict(type='Resize', keep_ratio=True),
  86. dict(type='RandomFlip'),
  87. dict(type='Normalize', **img_norm_cfg),
  88. dict(type='Pad', size_divisor=32),
  89. dict(type='ImageToTensor', keys=['img']),
  90. dict(type='Collect', keys=['img']),
  91. ])
  92. ]
  93. data = dict(
  94. samples_per_gpu=16,
  95. workers_per_gpu=8,
  96. train=dict(
  97. type=dataset_type,
  98. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_train/images/',
  99. classes=classes,
  100. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_train/annotations/train.json',
  101. pipeline=train_pipeline),
  102. val=dict(
  103. type=dataset_type,
  104. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_test/images/',
  105. classes=classes,
  106. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_test/annotations/test.json',
  107. pipeline=test_pipeline),
  108. test=dict(
  109. type=dataset_type,
  110. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_test/images/',
  111. classes=classes,
  112. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_test/annotations/test.json',
  113. pipeline=test_pipeline))
  114. # optimizer
  115. optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
  116. optimizer_config = dict(grad_clip=None)
  117. # learning policy
  118. lr_config = dict(
  119. policy='CosineAnnealing',
  120. warmup='linear',
  121. warmup_iters=2000,
  122. warmup_ratio=1.0 / 10,
  123. min_lr_ratio=1e-5)
  124. runner = dict(type='EpochBasedRunner', max_epochs=40)
  125. evaluation = dict(interval=5, metric='bbox')

No Description

Contributors (3)