You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

robustness_eval.py 8.1 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251
  1. # Copyright (c) OpenMMLab. All rights reserved.
  2. import os.path as osp
  3. from argparse import ArgumentParser
  4. import mmcv
  5. import numpy as np
  6. def print_coco_results(results):
  7. def _print(result, ap=1, iouThr=None, areaRng='all', maxDets=100):
  8. titleStr = 'Average Precision' if ap == 1 else 'Average Recall'
  9. typeStr = '(AP)' if ap == 1 else '(AR)'
  10. iouStr = '0.50:0.95' \
  11. if iouThr is None else f'{iouThr:0.2f}'
  12. iStr = f' {titleStr:<18} {typeStr} @[ IoU={iouStr:<9} | '
  13. iStr += f'area={areaRng:>6s} | maxDets={maxDets:>3d} ] = {result:0.3f}'
  14. print(iStr)
  15. stats = np.zeros((12, ))
  16. stats[0] = _print(results[0], 1)
  17. stats[1] = _print(results[1], 1, iouThr=.5)
  18. stats[2] = _print(results[2], 1, iouThr=.75)
  19. stats[3] = _print(results[3], 1, areaRng='small')
  20. stats[4] = _print(results[4], 1, areaRng='medium')
  21. stats[5] = _print(results[5], 1, areaRng='large')
  22. stats[6] = _print(results[6], 0, maxDets=1)
  23. stats[7] = _print(results[7], 0, maxDets=10)
  24. stats[8] = _print(results[8], 0)
  25. stats[9] = _print(results[9], 0, areaRng='small')
  26. stats[10] = _print(results[10], 0, areaRng='medium')
  27. stats[11] = _print(results[11], 0, areaRng='large')
  28. def get_coco_style_results(filename,
  29. task='bbox',
  30. metric=None,
  31. prints='mPC',
  32. aggregate='benchmark'):
  33. assert aggregate in ['benchmark', 'all']
  34. if prints == 'all':
  35. prints = ['P', 'mPC', 'rPC']
  36. elif isinstance(prints, str):
  37. prints = [prints]
  38. for p in prints:
  39. assert p in ['P', 'mPC', 'rPC']
  40. if metric is None:
  41. metrics = [
  42. 'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'AR1', 'AR10', 'AR100',
  43. 'ARs', 'ARm', 'ARl'
  44. ]
  45. elif isinstance(metric, list):
  46. metrics = metric
  47. else:
  48. metrics = [metric]
  49. for metric_name in metrics:
  50. assert metric_name in [
  51. 'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'AR1', 'AR10', 'AR100',
  52. 'ARs', 'ARm', 'ARl'
  53. ]
  54. eval_output = mmcv.load(filename)
  55. num_distortions = len(list(eval_output.keys()))
  56. results = np.zeros((num_distortions, 6, len(metrics)), dtype='float32')
  57. for corr_i, distortion in enumerate(eval_output):
  58. for severity in eval_output[distortion]:
  59. for metric_j, metric_name in enumerate(metrics):
  60. mAP = eval_output[distortion][severity][task][metric_name]
  61. results[corr_i, severity, metric_j] = mAP
  62. P = results[0, 0, :]
  63. if aggregate == 'benchmark':
  64. mPC = np.mean(results[:15, 1:, :], axis=(0, 1))
  65. else:
  66. mPC = np.mean(results[:, 1:, :], axis=(0, 1))
  67. rPC = mPC / P
  68. print(f'\nmodel: {osp.basename(filename)}')
  69. if metric is None:
  70. if 'P' in prints:
  71. print(f'Performance on Clean Data [P] ({task})')
  72. print_coco_results(P)
  73. if 'mPC' in prints:
  74. print(f'Mean Performance under Corruption [mPC] ({task})')
  75. print_coco_results(mPC)
  76. if 'rPC' in prints:
  77. print(f'Relative Performance under Corruption [rPC] ({task})')
  78. print_coco_results(rPC)
  79. else:
  80. if 'P' in prints:
  81. print(f'Performance on Clean Data [P] ({task})')
  82. for metric_i, metric_name in enumerate(metrics):
  83. print(f'{metric_name:5} = {P[metric_i]:0.3f}')
  84. if 'mPC' in prints:
  85. print(f'Mean Performance under Corruption [mPC] ({task})')
  86. for metric_i, metric_name in enumerate(metrics):
  87. print(f'{metric_name:5} = {mPC[metric_i]:0.3f}')
  88. if 'rPC' in prints:
  89. print(f'Relative Performance under Corruption [rPC] ({task})')
  90. for metric_i, metric_name in enumerate(metrics):
  91. print(f'{metric_name:5} => {rPC[metric_i] * 100:0.1f} %')
  92. return results
  93. def get_voc_style_results(filename, prints='mPC', aggregate='benchmark'):
  94. assert aggregate in ['benchmark', 'all']
  95. if prints == 'all':
  96. prints = ['P', 'mPC', 'rPC']
  97. elif isinstance(prints, str):
  98. prints = [prints]
  99. for p in prints:
  100. assert p in ['P', 'mPC', 'rPC']
  101. eval_output = mmcv.load(filename)
  102. num_distortions = len(list(eval_output.keys()))
  103. results = np.zeros((num_distortions, 6, 20), dtype='float32')
  104. for i, distortion in enumerate(eval_output):
  105. for severity in eval_output[distortion]:
  106. mAP = [
  107. eval_output[distortion][severity][j]['ap']
  108. for j in range(len(eval_output[distortion][severity]))
  109. ]
  110. results[i, severity, :] = mAP
  111. P = results[0, 0, :]
  112. if aggregate == 'benchmark':
  113. mPC = np.mean(results[:15, 1:, :], axis=(0, 1))
  114. else:
  115. mPC = np.mean(results[:, 1:, :], axis=(0, 1))
  116. rPC = mPC / P
  117. print(f'\nmodel: {osp.basename(filename)}')
  118. if 'P' in prints:
  119. print(f'Performance on Clean Data [P] in AP50 = {np.mean(P):0.3f}')
  120. if 'mPC' in prints:
  121. print('Mean Performance under Corruption [mPC] in AP50 = '
  122. f'{np.mean(mPC):0.3f}')
  123. if 'rPC' in prints:
  124. print('Relative Performance under Corruption [rPC] in % = '
  125. f'{np.mean(rPC) * 100:0.1f}')
  126. return np.mean(results, axis=2, keepdims=True)
  127. def get_results(filename,
  128. dataset='coco',
  129. task='bbox',
  130. metric=None,
  131. prints='mPC',
  132. aggregate='benchmark'):
  133. assert dataset in ['coco', 'voc', 'cityscapes']
  134. if dataset in ['coco', 'cityscapes']:
  135. results = get_coco_style_results(
  136. filename,
  137. task=task,
  138. metric=metric,
  139. prints=prints,
  140. aggregate=aggregate)
  141. elif dataset == 'voc':
  142. if task != 'bbox':
  143. print('Only bbox analysis is supported for Pascal VOC')
  144. print('Will report bbox results\n')
  145. if metric not in [None, ['AP'], ['AP50']]:
  146. print('Only the AP50 metric is supported for Pascal VOC')
  147. print('Will report AP50 metric\n')
  148. results = get_voc_style_results(
  149. filename, prints=prints, aggregate=aggregate)
  150. return results
  151. def get_distortions_from_file(filename):
  152. eval_output = mmcv.load(filename)
  153. return get_distortions_from_results(eval_output)
  154. def get_distortions_from_results(eval_output):
  155. distortions = []
  156. for i, distortion in enumerate(eval_output):
  157. distortions.append(distortion.replace('_', ' '))
  158. return distortions
  159. def main():
  160. parser = ArgumentParser(description='Corruption Result Analysis')
  161. parser.add_argument('filename', help='result file path')
  162. parser.add_argument(
  163. '--dataset',
  164. type=str,
  165. choices=['coco', 'voc', 'cityscapes'],
  166. default='coco',
  167. help='dataset type')
  168. parser.add_argument(
  169. '--task',
  170. type=str,
  171. nargs='+',
  172. choices=['bbox', 'segm'],
  173. default=['bbox'],
  174. help='task to report')
  175. parser.add_argument(
  176. '--metric',
  177. nargs='+',
  178. choices=[
  179. None, 'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'AR1', 'AR10',
  180. 'AR100', 'ARs', 'ARm', 'ARl'
  181. ],
  182. default=None,
  183. help='metric to report')
  184. parser.add_argument(
  185. '--prints',
  186. type=str,
  187. nargs='+',
  188. choices=['P', 'mPC', 'rPC'],
  189. default='mPC',
  190. help='corruption benchmark metric to print')
  191. parser.add_argument(
  192. '--aggregate',
  193. type=str,
  194. choices=['all', 'benchmark'],
  195. default='benchmark',
  196. help='aggregate all results or only those \
  197. for benchmark corruptions')
  198. args = parser.parse_args()
  199. for task in args.task:
  200. get_results(
  201. args.filename,
  202. dataset=args.dataset,
  203. task=task,
  204. metric=args.metric,
  205. prints=args.prints,
  206. aggregate=args.aggregate)
  207. if __name__ == '__main__':
  208. main()

No Description

Contributors (1)