You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

yolov3_d53_mstrain-608_273e_coco.py 4.2 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127
  1. _base_ = '../_base_/default_runtime.py'
  2. # model settings
  3. model = dict(
  4. type='YOLOV3',
  5. backbone=dict(
  6. type='Darknet',
  7. depth=53,
  8. out_indices=(3, 4, 5),
  9. init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://darknet53')),
  10. neck=dict(
  11. type='YOLOV3Neck',
  12. num_scales=3,
  13. in_channels=[1024, 512, 256],
  14. out_channels=[512, 256, 128]),
  15. bbox_head=dict(
  16. type='YOLOV3Head',
  17. num_classes=80,
  18. in_channels=[512, 256, 128],
  19. out_channels=[1024, 512, 256],
  20. anchor_generator=dict(
  21. type='YOLOAnchorGenerator',
  22. base_sizes=[[(116, 90), (156, 198), (373, 326)],
  23. [(30, 61), (62, 45), (59, 119)],
  24. [(10, 13), (16, 30), (33, 23)]],
  25. strides=[32, 16, 8]),
  26. bbox_coder=dict(type='YOLOBBoxCoder'),
  27. featmap_strides=[32, 16, 8],
  28. loss_cls=dict(
  29. type='CrossEntropyLoss',
  30. use_sigmoid=True,
  31. loss_weight=1.0,
  32. reduction='sum'),
  33. loss_conf=dict(
  34. type='CrossEntropyLoss',
  35. use_sigmoid=True,
  36. loss_weight=1.0,
  37. reduction='sum'),
  38. loss_xy=dict(
  39. type='CrossEntropyLoss',
  40. use_sigmoid=True,
  41. loss_weight=2.0,
  42. reduction='sum'),
  43. loss_wh=dict(type='MSELoss', loss_weight=2.0, reduction='sum')),
  44. # training and testing settings
  45. train_cfg=dict(
  46. assigner=dict(
  47. type='GridAssigner',
  48. pos_iou_thr=0.5,
  49. neg_iou_thr=0.5,
  50. min_pos_iou=0)),
  51. test_cfg=dict(
  52. nms_pre=1000,
  53. min_bbox_size=0,
  54. score_thr=0.05,
  55. conf_thr=0.005,
  56. nms=dict(type='nms', iou_threshold=0.45),
  57. max_per_img=100))
  58. # dataset settings
  59. dataset_type = 'CocoDataset'
  60. data_root = 'data/coco/'
  61. img_norm_cfg = dict(mean=[0, 0, 0], std=[255., 255., 255.], to_rgb=True)
  62. train_pipeline = [
  63. dict(type='LoadImageFromFile', to_float32=True),
  64. dict(type='LoadAnnotations', with_bbox=True),
  65. dict(type='PhotoMetricDistortion'),
  66. dict(
  67. type='Expand',
  68. mean=img_norm_cfg['mean'],
  69. to_rgb=img_norm_cfg['to_rgb'],
  70. ratio_range=(1, 2)),
  71. dict(
  72. type='MinIoURandomCrop',
  73. min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9),
  74. min_crop_size=0.3),
  75. dict(type='Resize', img_scale=[(320, 320), (608, 608)], keep_ratio=True),
  76. dict(type='RandomFlip', flip_ratio=0.5),
  77. dict(type='Normalize', **img_norm_cfg),
  78. dict(type='Pad', size_divisor=32),
  79. dict(type='DefaultFormatBundle'),
  80. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
  81. ]
  82. test_pipeline = [
  83. dict(type='LoadImageFromFile'),
  84. dict(
  85. type='MultiScaleFlipAug',
  86. img_scale=(608, 608),
  87. flip=False,
  88. transforms=[
  89. dict(type='Resize', keep_ratio=True),
  90. dict(type='RandomFlip'),
  91. dict(type='Normalize', **img_norm_cfg),
  92. dict(type='Pad', size_divisor=32),
  93. dict(type='ImageToTensor', keys=['img']),
  94. dict(type='Collect', keys=['img'])
  95. ])
  96. ]
  97. data = dict(
  98. samples_per_gpu=8,
  99. workers_per_gpu=4,
  100. train=dict(
  101. type=dataset_type,
  102. ann_file=data_root + 'annotations/instances_train2017.json',
  103. img_prefix=data_root + 'train2017/',
  104. pipeline=train_pipeline),
  105. val=dict(
  106. type=dataset_type,
  107. ann_file=data_root + 'annotations/instances_val2017.json',
  108. img_prefix=data_root + 'val2017/',
  109. pipeline=test_pipeline),
  110. test=dict(
  111. type=dataset_type,
  112. ann_file=data_root + 'annotations/instances_val2017.json',
  113. img_prefix=data_root + 'val2017/',
  114. pipeline=test_pipeline))
  115. # optimizer
  116. optimizer = dict(type='SGD', lr=0.001, momentum=0.9, weight_decay=0.0005)
  117. optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
  118. # learning policy
  119. lr_config = dict(
  120. policy='step',
  121. warmup='linear',
  122. warmup_iters=2000, # same as burn-in in darknet
  123. warmup_ratio=0.1,
  124. step=[218, 246])
  125. # runtime settings
  126. runner = dict(type='EpochBasedRunner', max_epochs=273)
  127. evaluation = dict(interval=1, metric=['bbox'])

No Description

Contributors (3)