You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

vfnet_r50_fpn_1x_coco.py 3.2 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107
  1. _base_ = [
  2. '../_base_/datasets/coco_detection.py',
  3. '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
  4. ]
  5. # model settings
  6. model = dict(
  7. type='VFNet',
  8. backbone=dict(
  9. type='ResNet',
  10. depth=50,
  11. num_stages=4,
  12. out_indices=(0, 1, 2, 3),
  13. frozen_stages=1,
  14. norm_cfg=dict(type='BN', requires_grad=True),
  15. norm_eval=True,
  16. style='pytorch',
  17. init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
  18. neck=dict(
  19. type='FPN',
  20. in_channels=[256, 512, 1024, 2048],
  21. out_channels=256,
  22. start_level=1,
  23. add_extra_convs='on_output', # use P5
  24. num_outs=5,
  25. relu_before_extra_convs=True),
  26. bbox_head=dict(
  27. type='VFNetHead',
  28. num_classes=80,
  29. in_channels=256,
  30. stacked_convs=3,
  31. feat_channels=256,
  32. strides=[8, 16, 32, 64, 128],
  33. center_sampling=False,
  34. dcn_on_last_conv=False,
  35. use_atss=True,
  36. use_vfl=True,
  37. loss_cls=dict(
  38. type='VarifocalLoss',
  39. use_sigmoid=True,
  40. alpha=0.75,
  41. gamma=2.0,
  42. iou_weighted=True,
  43. loss_weight=1.0),
  44. loss_bbox=dict(type='GIoULoss', loss_weight=1.5),
  45. loss_bbox_refine=dict(type='GIoULoss', loss_weight=2.0)),
  46. # training and testing settings
  47. train_cfg=dict(
  48. assigner=dict(type='ATSSAssigner', topk=9),
  49. allowed_border=-1,
  50. pos_weight=-1,
  51. debug=False),
  52. test_cfg=dict(
  53. nms_pre=1000,
  54. min_bbox_size=0,
  55. score_thr=0.05,
  56. nms=dict(type='nms', iou_threshold=0.6),
  57. max_per_img=100))
  58. # data setting
  59. dataset_type = 'CocoDataset'
  60. data_root = 'data/coco/'
  61. img_norm_cfg = dict(
  62. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  63. train_pipeline = [
  64. dict(type='LoadImageFromFile'),
  65. dict(type='LoadAnnotations', with_bbox=True),
  66. dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
  67. dict(type='RandomFlip', flip_ratio=0.5),
  68. dict(type='Normalize', **img_norm_cfg),
  69. dict(type='Pad', size_divisor=32),
  70. dict(type='DefaultFormatBundle'),
  71. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
  72. ]
  73. test_pipeline = [
  74. dict(type='LoadImageFromFile'),
  75. dict(
  76. type='MultiScaleFlipAug',
  77. img_scale=(1333, 800),
  78. flip=False,
  79. transforms=[
  80. dict(type='Resize', keep_ratio=True),
  81. dict(type='RandomFlip'),
  82. dict(type='Normalize', **img_norm_cfg),
  83. dict(type='Pad', size_divisor=32),
  84. dict(type='DefaultFormatBundle'),
  85. dict(type='Collect', keys=['img']),
  86. ])
  87. ]
  88. data = dict(
  89. samples_per_gpu=2,
  90. workers_per_gpu=2,
  91. train=dict(pipeline=train_pipeline),
  92. val=dict(pipeline=test_pipeline),
  93. test=dict(pipeline=test_pipeline))
  94. # optimizer
  95. optimizer = dict(
  96. lr=0.01, paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.))
  97. optimizer_config = dict(grad_clip=None)
  98. # learning policy
  99. lr_config = dict(
  100. policy='step',
  101. warmup='linear',
  102. warmup_iters=500,
  103. warmup_ratio=0.1,
  104. step=[8, 11])
  105. runner = dict(type='EpochBasedRunner', max_epochs=12)

No Description

Contributors (3)