You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

mask_rcnn_swin-t-p4-w7_fpn_1x_coco.py 1.3 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142
  1. _base_ = [
  2. '../_base_/models/mask_rcnn_r50_fpn.py',
  3. '../_base_/datasets/coco_instance.py',
  4. '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
  5. ]
  6. pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth' # noqa
  7. model = dict(
  8. type='MaskRCNN',
  9. backbone=dict(
  10. _delete_=True,
  11. type='SwinTransformer',
  12. embed_dims=96,
  13. depths=[2, 2, 6, 2],
  14. num_heads=[3, 6, 12, 24],
  15. window_size=7,
  16. mlp_ratio=4,
  17. qkv_bias=True,
  18. qk_scale=None,
  19. drop_rate=0.,
  20. attn_drop_rate=0.,
  21. drop_path_rate=0.2,
  22. patch_norm=True,
  23. out_indices=(0, 1, 2, 3),
  24. with_cp=False,
  25. convert_weights=True,
  26. init_cfg=dict(type='Pretrained', checkpoint=pretrained)),
  27. neck=dict(in_channels=[96, 192, 384, 768]))
  28. optimizer = dict(
  29. _delete_=True,
  30. type='AdamW',
  31. lr=0.0001,
  32. betas=(0.9, 0.999),
  33. weight_decay=0.05,
  34. paramwise_cfg=dict(
  35. custom_keys={
  36. 'absolute_pos_embed': dict(decay_mult=0.),
  37. 'relative_position_bias_table': dict(decay_mult=0.),
  38. 'norm': dict(decay_mult=0.)
  39. }))
  40. lr_config = dict(warmup_iters=1000, step=[8, 11])
  41. runner = dict(max_epochs=12)

No Description

Contributors (3)