|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152 |
- # SSD: Single Shot MultiBox Detector
-
- ## Introduction
-
- <!-- [ALGORITHM] -->
-
- ```latex
- @article{Liu_2016,
- title={SSD: Single Shot MultiBox Detector},
- journal={ECCV},
- author={Liu, Wei and Anguelov, Dragomir and Erhan, Dumitru and Szegedy, Christian and Reed, Scott and Fu, Cheng-Yang and Berg, Alexander C.},
- year={2016},
- }
- ```
-
- ## Results and models of SSD
-
- | Backbone | Size | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
- | :------: | :---: | :---: | :-----: | :------: | :------------: | :----: | :------: | :--------: |
- | VGG16 | 300 | caffe | 120e | 9.9 | 43.7 | 25.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/ssd/ssd300_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/ssd/ssd300_coco/ssd300_coco_20210803_015428-d231a06e.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/ssd/ssd300_coco/ssd300_coco_20210803_015428.log.json) |
- | VGG16 | 512 | caffe | 120e | 19.4 | 30.7 | 29.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/ssd/ssd512_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/ssd/ssd512_coco/ssd512_coco_20210803_022849-0a47a1ca.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/ssd/ssd512_coco/ssd512_coco_20210803_022849.log.json) |
-
- ## Results and models of SSD-Lite
-
- | Backbone | Size | Training from scratch | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
- | :------------: | :---: | :-------------------: | :-----: | :------: | :------------: | :----: | :------: | :--------: |
- | MobileNetV2 | 320 | yes | 600e | 4.0 | 69.9 | 21.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/ssd/ssdlite_mobilenetv2_scratch_600e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/ssd/ssdlite_mobilenetv2_scratch_600e_coco/ssdlite_mobilenetv2_scratch_600e_coco_20210629_110627-974d9307.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/ssd/ssdlite_mobilenetv2_scratch_600e_coco/ssdlite_mobilenetv2_scratch_600e_coco_20210629_110627.log.json) |
-
- ## Notice
-
- ### Compatibility
-
- In v2.14.0, [PR5291](https://github.com/open-mmlab/mmdetection/pull/5291) refactored SSD neck and head for more
- flexible usage. If users want to use the SSD checkpoint trained in the older versions, we provide a scripts
- `tools/model_converters/upgrade_ssd_version.py` to convert the model weights.
-
- ```bash
- python tools/model_converters/upgrade_ssd_version.py ${OLD_MODEL_PATH} ${NEW_MODEL_PATH}
-
- ```
-
- - OLD_MODEL_PATH: the path to load the old version SSD model.
- - NEW_MODEL_PATH: the path to save the converted model weights.
-
- ### SSD-Lite training settings
-
- There are some differences between our implementation of MobileNetV2 SSD-Lite and the one in [TensorFlow 1.x detection model zoo](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md) .
-
- 1. Use 320x320 as input size instead of 300x300.
- 2. The anchor sizes are different.
- 3. The C4 feature map is taken from the last layer of stage 4 instead of the middle of the block.
- 4. The model in TensorFlow1.x is trained on coco 2014 and validated on coco minival2014, but we trained and validated the model on coco 2017. The mAP on val2017 is usually a little lower than minival2014 (refer to the results in TensorFlow Object Detection API, e.g., MobileNetV2 SSD gets 22 mAP on minival2014 but 20.2 mAP on val2017).
|