You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 5.1 kB

2 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465
  1. # Res2Net for object detection and instance segmentation
  2. ## Introduction
  3. <!-- [ALGORITHM] -->
  4. We propose a novel building block for CNNs, namely Res2Net, by constructing hierarchical residual-like connections within one single residual block. The Res2Net represents multi-scale features at a granular level and increases the range of receptive fields for each network layer.
  5. | Backbone |Params. | GFLOPs | top-1 err. | top-5 err. |
  6. | :-------------: |:----: | :-----: | :--------: | :--------: |
  7. | ResNet-101 |44.6 M | 7.8 | 22.63 | 6.44 |
  8. | ResNeXt-101-64x4d |83.5M | 15.5 | 20.40 | - |
  9. | HRNetV2p-W48 | 77.5M | 16.1 | 20.70 | 5.50 |
  10. | Res2Net-101 | 45.2M | 8.3 | 18.77 | 4.64 |
  11. Compared with other backbone networks, Res2Net requires fewer parameters and FLOPs.
  12. **Note:**
  13. - GFLOPs for classification are calculated with image size (224x224).
  14. ```latex
  15. @article{gao2019res2net,
  16. title={Res2Net: A New Multi-scale Backbone Architecture},
  17. author={Gao, Shang-Hua and Cheng, Ming-Ming and Zhao, Kai and Zhang, Xin-Yu and Yang, Ming-Hsuan and Torr, Philip},
  18. journal={IEEE TPAMI},
  19. year={2020},
  20. doi={10.1109/TPAMI.2019.2938758},
  21. }
  22. ```
  23. ## Results and Models
  24. ### Faster R-CNN
  25. | Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
  26. | :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :------: | :--------: |
  27. |R2-101-FPN | pytorch | 2x | 7.4 | - | 43.0 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/res2net/faster_rcnn_r2_101_fpn_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/res2net/faster_rcnn_r2_101_fpn_2x_coco/faster_rcnn_r2_101_fpn_2x_coco-175f1da6.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/res2net/faster_rcnn_r2_101_fpn_2x_coco/faster_rcnn_r2_101_fpn_2x_coco_20200514_231734.log.json) |
  28. ### Mask R-CNN
  29. | Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
  30. | :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :------: | :--------: |
  31. |R2-101-FPN | pytorch | 2x | 7.9 | - | 43.6 | 38.7 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/res2net/mask_rcnn_r2_101_fpn_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/res2net/mask_rcnn_r2_101_fpn_2x_coco/mask_rcnn_r2_101_fpn_2x_coco-17f061e8.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/res2net/mask_rcnn_r2_101_fpn_2x_coco/mask_rcnn_r2_101_fpn_2x_coco_20200515_002413.log.json) |
  32. ### Cascade R-CNN
  33. | Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
  34. | :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :------: | :--------: |
  35. |R2-101-FPN | pytorch | 20e | 7.8 | - | 45.7 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/res2net/cascade_rcnn_r2_101_fpn_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/res2net/cascade_rcnn_r2_101_fpn_20e_coco/cascade_rcnn_r2_101_fpn_20e_coco-f4b7b7db.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/res2net/cascade_rcnn_r2_101_fpn_20e_coco/cascade_rcnn_r2_101_fpn_20e_coco_20200515_091644.log.json) |
  36. ### Cascade Mask R-CNN
  37. | Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
  38. | :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :------: | :--------: |
  39. R2-101-FPN | pytorch | 20e | 9.5 | - | 46.4 | 40.0 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/res2net/cascade_mask_rcnn_r2_101_fpn_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/res2net/cascade_mask_rcnn_r2_101_fpn_20e_coco/cascade_mask_rcnn_r2_101_fpn_20e_coco-8a7b41e1.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/res2net/cascade_mask_rcnn_r2_101_fpn_20e_coco/cascade_mask_rcnn_r2_101_fpn_20e_coco_20200515_091645.log.json) |
  40. ### Hybrid Task Cascade (HTC)
  41. | Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
  42. | :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :------: | :--------: |
  43. | R2-101-FPN | pytorch | 20e | - | - | 47.5 | 41.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/res2net/htc_r2_101_fpn_20e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/res2net/htc_r2_101_fpn_20e_coco/htc_r2_101_fpn_20e_coco-3a8d2112.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/res2net/htc_r2_101_fpn_20e_coco/htc_r2_101_fpn_20e_coco_20200515_150029.log.json) |
  44. - Res2Net ImageNet pretrained models are in [Res2Net-PretrainedModels](https://github.com/Res2Net/Res2Net-PretrainedModels).
  45. - More applications of Res2Net are in [Res2Net-Github](https://github.com/Res2Net/).

No Description

Contributors (3)