You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

reppoints_moment_r50_fpn_1x_coco.py 2.1 kB

2 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667
  1. _base_ = [
  2. '../_base_/datasets/coco_detection.py',
  3. '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
  4. ]
  5. model = dict(
  6. type='RepPointsDetector',
  7. backbone=dict(
  8. type='ResNet',
  9. depth=50,
  10. num_stages=4,
  11. out_indices=(0, 1, 2, 3),
  12. frozen_stages=1,
  13. norm_cfg=dict(type='BN', requires_grad=True),
  14. norm_eval=True,
  15. style='pytorch',
  16. init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
  17. neck=dict(
  18. type='FPN',
  19. in_channels=[256, 512, 1024, 2048],
  20. out_channels=256,
  21. start_level=1,
  22. add_extra_convs='on_input',
  23. num_outs=5),
  24. bbox_head=dict(
  25. type='RepPointsHead',
  26. num_classes=80,
  27. in_channels=256,
  28. feat_channels=256,
  29. point_feat_channels=256,
  30. stacked_convs=3,
  31. num_points=9,
  32. gradient_mul=0.1,
  33. point_strides=[8, 16, 32, 64, 128],
  34. point_base_scale=4,
  35. loss_cls=dict(
  36. type='FocalLoss',
  37. use_sigmoid=True,
  38. gamma=2.0,
  39. alpha=0.25,
  40. loss_weight=1.0),
  41. loss_bbox_init=dict(type='SmoothL1Loss', beta=0.11, loss_weight=0.5),
  42. loss_bbox_refine=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0),
  43. transform_method='moment'),
  44. # training and testing settings
  45. train_cfg=dict(
  46. init=dict(
  47. assigner=dict(type='PointAssigner', scale=4, pos_num=1),
  48. allowed_border=-1,
  49. pos_weight=-1,
  50. debug=False),
  51. refine=dict(
  52. assigner=dict(
  53. type='MaxIoUAssigner',
  54. pos_iou_thr=0.5,
  55. neg_iou_thr=0.4,
  56. min_pos_iou=0,
  57. ignore_iof_thr=-1),
  58. allowed_border=-1,
  59. pos_weight=-1,
  60. debug=False)),
  61. test_cfg=dict(
  62. nms_pre=1000,
  63. min_bbox_size=0,
  64. score_thr=0.05,
  65. nms=dict(type='nms', iou_threshold=0.5),
  66. max_per_img=100))
  67. optimizer = dict(lr=0.01)

No Description

Contributors (3)