You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

metafile.yml 16 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437
  1. Collections:
  2. - Name: RegNet
  3. Metadata:
  4. Training Data: COCO
  5. Training Techniques:
  6. - SGD with Momentum
  7. - Weight Decay
  8. Training Resources: 8x V100 GPUs
  9. Architecture:
  10. - RegNet
  11. Paper:
  12. URL: https://arxiv.org/abs/2003.13678
  13. Title: 'Designing Network Design Spaces'
  14. README: configs/regnet/README.md
  15. Code:
  16. URL: https://github.com/open-mmlab/mmdetection/blob/v2.1.0/mmdet/models/backbones/regnet.py#L11
  17. Version: v2.1.0
  18. Models:
  19. - Name: mask_rcnn_regnetx-3.2GF_fpn_1x_coco
  20. In Collection: RegNet
  21. Config: configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py
  22. Metadata:
  23. Training Memory (GB): 5.0
  24. Epochs: 12
  25. Results:
  26. - Task: Object Detection
  27. Dataset: COCO
  28. Metrics:
  29. box AP: 40.3
  30. - Task: Instance Segmentation
  31. Dataset: COCO
  32. Metrics:
  33. mask AP: 36.6
  34. Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco/mask_rcnn_regnetx-3.2GF_fpn_1x_coco_20200520_163141-2a9d1814.pth
  35. - Name: mask_rcnn_regnetx-4GF_fpn_1x_coco
  36. In Collection: RegNet
  37. Config: configs/regnet/mask_rcnn_regnetx-4GF_fpn_1x_coco.py
  38. Metadata:
  39. Training Memory (GB): 5.5
  40. Epochs: 12
  41. Results:
  42. - Task: Object Detection
  43. Dataset: COCO
  44. Metrics:
  45. box AP: 41.5
  46. - Task: Instance Segmentation
  47. Dataset: COCO
  48. Metrics:
  49. mask AP: 37.4
  50. Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-4GF_fpn_1x_coco/mask_rcnn_regnetx-4GF_fpn_1x_coco_20200517_180217-32e9c92d.pth
  51. - Name: mask_rcnn_regnetx-6.4GF_fpn_1x_coco
  52. In Collection: RegNet
  53. Config: configs/regnet/mask_rcnn_regnetx-6.4GF_fpn_1x_coco.py
  54. Metadata:
  55. Training Memory (GB): 6.1
  56. Epochs: 12
  57. Results:
  58. - Task: Object Detection
  59. Dataset: COCO
  60. Metrics:
  61. box AP: 41.0
  62. - Task: Instance Segmentation
  63. Dataset: COCO
  64. Metrics:
  65. mask AP: 37.1
  66. Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-6.4GF_fpn_1x_coco/mask_rcnn_regnetx-6.4GF_fpn_1x_coco_20200517_180439-3a7aae83.pth
  67. - Name: mask_rcnn_regnetx-8GF_fpn_1x_coco
  68. In Collection: RegNet
  69. Config: configs/regnet/mask_rcnn_regnetx-8GF_fpn_1x_coco.py
  70. Metadata:
  71. Training Memory (GB): 6.4
  72. Epochs: 12
  73. Results:
  74. - Task: Object Detection
  75. Dataset: COCO
  76. Metrics:
  77. box AP: 41.7
  78. - Task: Instance Segmentation
  79. Dataset: COCO
  80. Metrics:
  81. mask AP: 37.5
  82. Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-8GF_fpn_1x_coco/mask_rcnn_regnetx-8GF_fpn_1x_coco_20200517_180515-09daa87e.pth
  83. - Name: mask_rcnn_regnetx-12GF_fpn_1x_coco
  84. In Collection: RegNet
  85. Config: configs/regnet/mask_rcnn_regnetx-12GF_fpn_1x_coco.py
  86. Metadata:
  87. Training Memory (GB): 7.4
  88. Epochs: 12
  89. Results:
  90. - Task: Object Detection
  91. Dataset: COCO
  92. Metrics:
  93. box AP: 42.2
  94. - Task: Instance Segmentation
  95. Dataset: COCO
  96. Metrics:
  97. mask AP: 38
  98. Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-12GF_fpn_1x_coco/mask_rcnn_regnetx-12GF_fpn_1x_coco_20200517_180552-b538bd8b.pth
  99. - Name: mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco
  100. In Collection: RegNet
  101. Config: configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco.py
  102. Metadata:
  103. Training Memory (GB): 5.0
  104. Epochs: 12
  105. Results:
  106. - Task: Object Detection
  107. Dataset: COCO
  108. Metrics:
  109. box AP: 40.3
  110. - Task: Instance Segmentation
  111. Dataset: COCO
  112. Metrics:
  113. mask AP: 36.6
  114. Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco/mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco_20200520_172726-75f40794.pth
  115. - Name: faster_rcnn_regnetx-3.2GF_fpn_1x_coco
  116. In Collection: RegNet
  117. Config: configs/regnet/faster_rcnn_regnetx-3.2GF_fpn_1x_coco.py
  118. Metadata:
  119. Training Memory (GB): 4.5
  120. Epochs: 12
  121. Results:
  122. - Task: Object Detection
  123. Dataset: COCO
  124. Metrics:
  125. box AP: 39.9
  126. Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-3.2GF_fpn_1x_coco/faster_rcnn_regnetx-3.2GF_fpn_1x_coco_20200517_175927-126fd9bf.pth
  127. - Name: faster_rcnn_regnetx-3.2GF_fpn_2x_coco
  128. In Collection: RegNet
  129. Config: configs/regnet/faster_rcnn_regnetx-3.2GF_fpn_2x_coco.py
  130. Metadata:
  131. Training Memory (GB): 4.5
  132. Epochs: 24
  133. Results:
  134. - Task: Object Detection
  135. Dataset: COCO
  136. Metrics:
  137. box AP: 41.1
  138. Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-3.2GF_fpn_2x_coco/faster_rcnn_regnetx-3.2GF_fpn_2x_coco_20200520_223955-e2081918.pth
  139. - Name: retinanet_regnetx-800MF_fpn_1x_coco
  140. In Collection: RegNet
  141. Config: configs/regnet/retinanet_regnetx-800MF_fpn_1x_coco.py
  142. Metadata:
  143. Training Memory (GB): 2.5
  144. Epochs: 12
  145. Results:
  146. - Task: Object Detection
  147. Dataset: COCO
  148. Metrics:
  149. box AP: 35.6
  150. Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/retinanet_regnetx-800MF_fpn_1x_coco/retinanet_regnetx-800MF_fpn_1x_coco_20200517_191403-f6f91d10.pth
  151. - Name: retinanet_regnetx-1.6GF_fpn_1x_coco
  152. In Collection: RegNet
  153. Config: configs/regnet/retinanet_regnetx-1.6GF_fpn_1x_coco.py
  154. Metadata:
  155. Training Memory (GB): 3.3
  156. Epochs: 12
  157. Results:
  158. - Task: Object Detection
  159. Dataset: COCO
  160. Metrics:
  161. box AP: 37.3
  162. Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/retinanet_regnetx-1.6GF_fpn_1x_coco/retinanet_regnetx-1.6GF_fpn_1x_coco_20200517_191403-37009a9d.pth
  163. - Name: retinanet_regnetx-3.2GF_fpn_1x_coco
  164. In Collection: RegNet
  165. Config: configs/regnet/retinanet_regnetx-3.2GF_fpn_1x_coco.py
  166. Metadata:
  167. Training Memory (GB): 4.2
  168. Epochs: 12
  169. Results:
  170. - Task: Object Detection
  171. Dataset: COCO
  172. Metrics:
  173. box AP: 39.1
  174. Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/retinanet_regnetx-3.2GF_fpn_1x_coco/retinanet_regnetx-3.2GF_fpn_1x_coco_20200520_163141-cb1509e8.pth
  175. - Name: faster_rcnn_regnetx-400MF_fpn_mstrain_3x_coco
  176. In Collection: RegNet
  177. Config: configs/regnet/faster_rcnn_regnetx-400MF_fpn_mstrain_3x_coco.py
  178. Metadata:
  179. Training Memory (GB): 2.3
  180. Epochs: 36
  181. Results:
  182. - Task: Object Detection
  183. Dataset: COCO
  184. Metrics:
  185. box AP: 37.1
  186. Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-400MF_fpn_mstrain_3x_coco/faster_rcnn_regnetx-400MF_fpn_mstrain_3x_coco_20210526_095112-e1967c37.pth
  187. - Name: faster_rcnn_regnetx-800MF_fpn_mstrain_3x_coco
  188. In Collection: RegNet
  189. Config: configs/regnet/faster_rcnn_regnetx-800MF_fpn_mstrain_3x_coco.py
  190. Metadata:
  191. Training Memory (GB): 2.8
  192. Epochs: 36
  193. Results:
  194. - Task: Object Detection
  195. Dataset: COCO
  196. Metrics:
  197. box AP: 38.8
  198. Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-800MF_fpn_mstrain_3x_coco/faster_rcnn_regnetx-800MF_fpn_mstrain_3x_coco_20210526_095118-a2c70b20.pth
  199. - Name: faster_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco
  200. In Collection: RegNet
  201. Config: configs/regnet/faster_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco.py
  202. Metadata:
  203. Training Memory (GB): 3.4
  204. Epochs: 36
  205. Results:
  206. - Task: Object Detection
  207. Dataset: COCO
  208. Metrics:
  209. box AP: 40.5
  210. Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco/faster_rcnn_regnetx-1_20210526_095325-94aa46cc.pth
  211. - Name: faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco
  212. In Collection: RegNet
  213. Config: configs/regnet/faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py
  214. Metadata:
  215. Training Memory (GB): 4.4
  216. Epochs: 36
  217. Results:
  218. - Task: Object Detection
  219. Dataset: COCO
  220. Metrics:
  221. box AP: 42.3
  222. Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco/faster_rcnn_regnetx-3_20210526_095152-e16a5227.pth
  223. - Name: faster_rcnn_regnetx-4GF_fpn_mstrain_3x_coco
  224. In Collection: RegNet
  225. Config: configs/regnet/faster_rcnn_regnetx-4GF_fpn_mstrain_3x_coco.py
  226. Metadata:
  227. Training Memory (GB): 4.9
  228. Epochs: 36
  229. Results:
  230. - Task: Object Detection
  231. Dataset: COCO
  232. Metrics:
  233. box AP: 42.8
  234. Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-4GF_fpn_mstrain_3x_coco/faster_rcnn_regnetx-4GF_fpn_mstrain_3x_coco_20210526_095201-65eaf841.pth
  235. - Name: mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco
  236. In Collection: RegNet
  237. Config: configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py
  238. Metadata:
  239. Training Memory (GB): 5.0
  240. Epochs: 36
  241. Results:
  242. - Task: Object Detection
  243. Dataset: COCO
  244. Metrics:
  245. box AP: 43.1
  246. - Task: Instance Segmentation
  247. Dataset: COCO
  248. Metrics:
  249. mask AP: 38.7
  250. Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco/mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco_20200521_202221-99879813.pth
  251. - Name: mask_rcnn_regnetx-400MF_fpn_mstrain-poly_3x_coco
  252. In Collection: RegNet
  253. Config: configs/regnet/mask_rcnn_regnetx-400MF_fpn_mstrain-poly_3x_coco.py
  254. Metadata:
  255. Training Memory (GB): 2.5
  256. Epochs: 36
  257. Results:
  258. - Task: Object Detection
  259. Dataset: COCO
  260. Metrics:
  261. box AP: 37.6
  262. - Task: Instance Segmentation
  263. Dataset: COCO
  264. Metrics:
  265. mask AP: 34.4
  266. Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-400MF_fpn_mstrain-poly_3x_coco/mask_rcnn_regnetx-400MF_fpn_mstrain-poly_3x_coco_20210601_235443-8aac57a4.pth
  267. - Name: mask_rcnn_regnetx-800MF_fpn_mstrain-poly_3x_coco
  268. In Collection: RegNet
  269. Config: configs/regnet/mask_rcnn_regnetx-800MF_fpn_mstrain-poly_3x_coco.py
  270. Metadata:
  271. Training Memory (GB): 2.9
  272. Epochs: 36
  273. Results:
  274. - Task: Object Detection
  275. Dataset: COCO
  276. Metrics:
  277. box AP: 39.5
  278. - Task: Instance Segmentation
  279. Dataset: COCO
  280. Metrics:
  281. mask AP: 36.1
  282. Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-800MF_fpn_mstrain-poly_3x_coco/mask_rcnn_regnetx-800MF_fpn_mstrain-poly_3x_coco_20210602_210641-715d51f5.pth
  283. - Name: mask_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco
  284. In Collection: RegNet
  285. Config: configs/regnet/mask_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco.py
  286. Metadata:
  287. Training Memory (GB): 3.6
  288. Epochs: 36
  289. Results:
  290. - Task: Object Detection
  291. Dataset: COCO
  292. Metrics:
  293. box AP: 40.9
  294. - Task: Instance Segmentation
  295. Dataset: COCO
  296. Metrics:
  297. mask AP: 37.5
  298. Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-1.6GF_fpn_mstrain-poly_3x_coco/mask_rcnn_regnetx-1_20210602_210641-6764cff5.pth
  299. - Name: mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco
  300. In Collection: RegNet
  301. Config: configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py
  302. Metadata:
  303. Training Memory (GB): 5.0
  304. Epochs: 36
  305. Results:
  306. - Task: Object Detection
  307. Dataset: COCO
  308. Metrics:
  309. box AP: 43.1
  310. - Task: Instance Segmentation
  311. Dataset: COCO
  312. Metrics:
  313. mask AP: 38.7
  314. Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-1.6GF_fpn_mstrain-poly_3x_coco/mask_rcnn_regnetx-1_20210602_210641-6e63e19c.pth
  315. - Name: mask_rcnn_regnetx-4GF_fpn_mstrain_3x_coco
  316. In Collection: RegNet
  317. Config: configs/regnet/mask_rcnn_regnetx-4GF_fpn_mstrain_3x_coco.py
  318. Metadata:
  319. Training Memory (GB): 5.1
  320. Epochs: 36
  321. Results:
  322. - Task: Object Detection
  323. Dataset: COCO
  324. Metrics:
  325. box AP: 43.4
  326. - Task: Instance Segmentation
  327. Dataset: COCO
  328. Metrics:
  329. mask AP: 39.2
  330. Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-4GF_fpn_mstrain-poly_3x_coco/mask_rcnn_regnetx-4GF_fpn_mstrain-poly_3x_coco_20210602_032621-00f0331c.pth
  331. - Name: cascade_mask_rcnn_regnetx-400MF_fpn_mstrain_3x_coco
  332. In Collection: RegNet
  333. Config: configs/regnet/cascade_mask_rcnn_regnetx-400MF_fpn_mstrain_3x_coco.py
  334. Metadata:
  335. Training Memory (GB): 4.3
  336. Epochs: 36
  337. Results:
  338. - Task: Object Detection
  339. Dataset: COCO
  340. Metrics:
  341. box AP: 41.6
  342. - Task: Instance Segmentation
  343. Dataset: COCO
  344. Metrics:
  345. mask AP: 36.4
  346. Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/cascade_mask_rcnn_regnetx-400MF_fpn_mstrain_3x_coco/cascade_mask_rcnn_regnetx-400MF_fpn_mstrain_3x_coco_20210715_211619-5142f449.pth
  347. - Name: cascade_mask_rcnn_regnetx-800MF_fpn_mstrain_3x_coco
  348. In Collection: RegNet
  349. Config: configs/regnet/cascade_mask_rcnn_regnetx-800MF_fpn_mstrain_3x_coco.py
  350. Metadata:
  351. Training Memory (GB): 4.8
  352. Epochs: 36
  353. Results:
  354. - Task: Object Detection
  355. Dataset: COCO
  356. Metrics:
  357. box AP: 42.8
  358. - Task: Instance Segmentation
  359. Dataset: COCO
  360. Metrics:
  361. mask AP: 37.6
  362. Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/cascade_mask_rcnn_regnetx-800MF_fpn_mstrain_3x_coco/cascade_mask_rcnn_regnetx-800MF_fpn_mstrain_3x_coco_20210715_211616-dcbd13f4.pth
  363. - Name: cascade_mask_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco
  364. In Collection: RegNet
  365. Config: configs/regnet/cascade_mask_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco.py
  366. Metadata:
  367. Training Memory (GB): 5.4
  368. Epochs: 36
  369. Results:
  370. - Task: Object Detection
  371. Dataset: COCO
  372. Metrics:
  373. box AP: 44.5
  374. - Task: Instance Segmentation
  375. Dataset: COCO
  376. Metrics:
  377. mask AP: 39.0
  378. Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/cascade_mask_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco/cascade_mask_rcnn_regnetx-1_20210715_211616-75f29a61.pth
  379. - Name: cascade_mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco
  380. In Collection: RegNet
  381. Config: configs/regnet/cascade_mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py
  382. Metadata:
  383. Training Memory (GB): 6.4
  384. Epochs: 36
  385. Results:
  386. - Task: Object Detection
  387. Dataset: COCO
  388. Metrics:
  389. box AP: 45.8
  390. - Task: Instance Segmentation
  391. Dataset: COCO
  392. Metrics:
  393. mask AP: 40.0
  394. Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/cascade_mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco/cascade_mask_rcnn_regnetx-3_20210715_211616-b9c2c58b.pth
  395. - Name: cascade_mask_rcnn_regnetx-4GF_fpn_mstrain_3x_coco
  396. In Collection: RegNet
  397. Config: configs/regnet/cascade_mask_rcnn_regnetx-4GF_fpn_mstrain_3x_coco.py
  398. Metadata:
  399. Training Memory (GB): 6.9
  400. Epochs: 36
  401. Results:
  402. - Task: Object Detection
  403. Dataset: COCO
  404. Metrics:
  405. box AP: 45.8
  406. - Task: Instance Segmentation
  407. Dataset: COCO
  408. Metrics:
  409. mask AP: 40.0
  410. Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/cascade_mask_rcnn_regnetx-4GF_fpn_mstrain_3x_coco/cascade_mask_rcnn_regnetx-4GF_fpn_mstrain_3x_coco_20210715_212034-cbb1be4c.pth

No Description

Contributors (3)