You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 3.9 kB

2 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950
  1. # Panoptic feature pyramid networks
  2. ## Introduction
  3. <!-- [ALGORITHM] -->
  4. The base method for panoptic segmentation task.
  5. ```
  6. @inproceedings{kirillov2018panopticfpn,
  7. author = {
  8. Alexander Kirillov,
  9. Ross Girshick,
  10. Kaiming He,
  11. Piotr Dollar,
  12. },
  13. title = {Panoptic Feature Pyramid Networks},
  14. booktitle = {Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  15. year = {2019}
  16. }
  17. ```
  18. ## Dataset
  19. PanopticFPN requires COCO and [COCO-panoptic](http://images.cocodataset.org/annotations/panoptic_annotations_trainval2017.zip) dataset for training and evaluation. You need to download and extract it in the COCO dataset path.
  20. The directory should be like this.
  21. ```none
  22. mmdetection
  23. ├── mmdet
  24. ├── tools
  25. ├── configs
  26. ├── data
  27. │ ├── coco
  28. │ │ ├── annotations
  29. │ │ │ ├── panoptic_train2017.json
  30. │ │ │ ├── panoptic_train2017
  31. │ │ │ ├── panoptic_val2017.json
  32. │ │ │ ├── panoptic_val2017
  33. │ │ ├── train2017
  34. │ │ ├── val2017
  35. │ │ ├── test2017
  36. ```
  37. ## Results and Models
  38. | Backbone | style | Lr schd | Mem (GB) | Inf time (fps) | PQ | SQ | RQ | PQ_th | SQ_th | RQ_th | PQ_st | SQ_st | RQ_st | Config | Download |
  39. |:-------------:|:----------:|:-------:|:--------:|:--------------:|:----:|:----:|:----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:------:|:--------:|
  40. | R-50-FPN | pytorch | 1x | 4.7 | | 40.2 | 77.8 | 49.3 | 47.8 | 80.9 | 57.5 | 28.9 | 73.1 | 37.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/panoptic_fpn/panoptic_fpn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/panoptic_fpn/panoptic_fpn_r50_fpn_1x_coco/panoptic_fpn_r50_fpn_1x_coco_20210821_101153-9668fd13.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/panoptic_fpn/panoptic_fpn_r50_fpn_1x_coco/panoptic_fpn_r50_fpn_1x_coco_20210821_101153.log.json) |
  41. | R-50-FPN | pytorch | 3x | - | - | 42.5 | 78.1 | 51.7 | 50.3 | 81.5 | 60.3 | 30.7 | 73.0 | 38.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/panoptic_fpn/panoptic_fpn_r50_fpn_mstrain_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/panoptic_fpn/panoptic_fpn_r50_fpn_mstrain_3x_coco/panoptic_fpn_r50_fpn_mstrain_3x_coco_20210824_171155-5650f98b.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/panoptic_fpn/panoptic_fpn_r50_fpn_mstrain_3x_coco/panoptic_fpn_r50_fpn_mstrain_3x_coco_20210824_171155.log.json) |
  42. | R-101-FPN | pytorch | 1x | 6.7 | | 42.2 | 78.3 | 51.4 | 50.1 | 81.4 | 59.9 | 30.3 | 73.6 | 38.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/panoptic_fpn/panoptic_fpn_r101_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/panoptic_fpn/panoptic_fpn_r101_fpn_1x_coco/panoptic_fpn_r101_fpn_1x_coco_20210820_193950-ab9157a2.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/panoptic_fpn/panoptic_fpn_r101_fpn_1x_coco/panoptic_fpn_r101_fpn_1x_coco_20210820_193950.log.json) |
  43. | R-101-FPN | pytorch | 3x | - | - | 44.1 | 78.9 | 53.6 | 52.1 | 81.7 | 62.3 | 32.0 | 74.6 | 40.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/panoptic_fpn/panoptic_fpn_r101_fpn_mstrain_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/panoptic_fpn/panoptic_fpn_r101_fpn_mstrain_3x_coco/panoptic_fpn_r101_fpn_mstrain_3x_coco_20210823_114712-9c99acc4.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/panoptic_fpn/panoptic_fpn_r101_fpn_mstrain_3x_coco/panoptic_fpn_r101_fpn_mstrain_3x_coco_20210823_114712.log.json) |

No Description

Contributors (3)