You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

metafile.yml 20 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604
  1. Collections:
  2. - Name: HRNet
  3. Metadata:
  4. Training Data: COCO
  5. Training Techniques:
  6. - SGD with Momentum
  7. - Weight Decay
  8. Training Resources: 8x V100 GPUs
  9. Architecture:
  10. - HRNet
  11. Paper:
  12. URL: https://arxiv.org/abs/1904.04514
  13. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  14. README: configs/hrnet/README.md
  15. Code:
  16. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  17. Version: v2.0.0
  18. Models:
  19. - Name: faster_rcnn_hrnetv2p_w18_1x_coco
  20. In Collection: HRNet
  21. Config: configs/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco.py
  22. Metadata:
  23. Training Memory (GB): 6.6
  24. inference time (ms/im):
  25. - value: 74.63
  26. hardware: V100
  27. backend: PyTorch
  28. batch size: 1
  29. mode: FP32
  30. resolution: (800, 1333)
  31. Epochs: 12
  32. Results:
  33. - Task: Object Detection
  34. Dataset: COCO
  35. Metrics:
  36. box AP: 36.9
  37. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco/faster_rcnn_hrnetv2p_w18_1x_coco_20200130-56651a6d.pth
  38. - Name: faster_rcnn_hrnetv2p_w18_2x_coco
  39. In Collection: HRNet
  40. Config: configs/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco.py
  41. Metadata:
  42. Training Memory (GB): 6.6
  43. inference time (ms/im):
  44. - value: 74.63
  45. hardware: V100
  46. backend: PyTorch
  47. batch size: 1
  48. mode: FP32
  49. resolution: (800, 1333)
  50. Epochs: 24
  51. Results:
  52. - Task: Object Detection
  53. Dataset: COCO
  54. Metrics:
  55. box AP: 38.9
  56. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco/faster_rcnn_hrnetv2p_w18_2x_coco_20200702_085731-a4ec0611.pth
  57. - Name: faster_rcnn_hrnetv2p_w32_1x_coco
  58. In Collection: HRNet
  59. Config: configs/hrnet/faster_rcnn_hrnetv2p_w32_1x_coco.py
  60. Metadata:
  61. Training Memory (GB): 9.0
  62. inference time (ms/im):
  63. - value: 80.65
  64. hardware: V100
  65. backend: PyTorch
  66. batch size: 1
  67. mode: FP32
  68. resolution: (800, 1333)
  69. Epochs: 12
  70. Results:
  71. - Task: Object Detection
  72. Dataset: COCO
  73. Metrics:
  74. box AP: 40.2
  75. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w32_1x_coco/faster_rcnn_hrnetv2p_w32_1x_coco_20200130-6e286425.pth
  76. - Name: faster_rcnn_hrnetv2p_w32_2x_coco
  77. In Collection: HRNet
  78. Config: configs/hrnet/faster_rcnn_hrnetv2p_w32_2x_coco.py
  79. Metadata:
  80. Training Memory (GB): 9.0
  81. inference time (ms/im):
  82. - value: 80.65
  83. hardware: V100
  84. backend: PyTorch
  85. batch size: 1
  86. mode: FP32
  87. resolution: (800, 1333)
  88. Epochs: 24
  89. Results:
  90. - Task: Object Detection
  91. Dataset: COCO
  92. Metrics:
  93. box AP: 41.4
  94. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w32_2x_coco/faster_rcnn_hrnetv2p_w32_2x_coco_20200529_015927-976a9c15.pth
  95. - Name: faster_rcnn_hrnetv2p_w40_1x_coco
  96. In Collection: HRNet
  97. Config: configs/hrnet/faster_rcnn_hrnetv2p_w40_1x_coco.py
  98. Metadata:
  99. Training Memory (GB): 10.4
  100. inference time (ms/im):
  101. - value: 95.24
  102. hardware: V100
  103. backend: PyTorch
  104. batch size: 1
  105. mode: FP32
  106. resolution: (800, 1333)
  107. Epochs: 12
  108. Results:
  109. - Task: Object Detection
  110. Dataset: COCO
  111. Metrics:
  112. box AP: 41.2
  113. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w40_1x_coco/faster_rcnn_hrnetv2p_w40_1x_coco_20200210-95c1f5ce.pth
  114. - Name: faster_rcnn_hrnetv2p_w40_2x_coco
  115. In Collection: HRNet
  116. Config: configs/hrnet/faster_rcnn_hrnetv2p_w40_2x_coco.py
  117. Metadata:
  118. Training Memory (GB): 10.4
  119. inference time (ms/im):
  120. - value: 95.24
  121. hardware: V100
  122. backend: PyTorch
  123. batch size: 1
  124. mode: FP32
  125. resolution: (800, 1333)
  126. Epochs: 24
  127. Results:
  128. - Task: Object Detection
  129. Dataset: COCO
  130. Metrics:
  131. box AP: 42.1
  132. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w40_2x_coco/faster_rcnn_hrnetv2p_w40_2x_coco_20200512_161033-0f236ef4.pth
  133. - Name: mask_rcnn_hrnetv2p_w18_1x_coco
  134. In Collection: HRNet
  135. Config: configs/hrnet/mask_rcnn_hrnetv2p_w18_1x_coco.py
  136. Metadata:
  137. Training Memory (GB): 7.0
  138. inference time (ms/im):
  139. - value: 85.47
  140. hardware: V100
  141. backend: PyTorch
  142. batch size: 1
  143. mode: FP32
  144. resolution: (800, 1333)
  145. Epochs: 12
  146. Results:
  147. - Task: Object Detection
  148. Dataset: COCO
  149. Metrics:
  150. box AP: 37.7
  151. - Task: Instance Segmentation
  152. Dataset: COCO
  153. Metrics:
  154. mask AP: 34.2
  155. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w18_1x_coco/mask_rcnn_hrnetv2p_w18_1x_coco_20200205-1c3d78ed.pth
  156. - Name: mask_rcnn_hrnetv2p_w18_2x_coco
  157. In Collection: HRNet
  158. Config: configs/hrnet/mask_rcnn_hrnetv2p_w18_2x_coco.py
  159. Metadata:
  160. Training Memory (GB): 7.0
  161. inference time (ms/im):
  162. - value: 85.47
  163. hardware: V100
  164. backend: PyTorch
  165. batch size: 1
  166. mode: FP32
  167. resolution: (800, 1333)
  168. Epochs: 24
  169. Results:
  170. - Task: Object Detection
  171. Dataset: COCO
  172. Metrics:
  173. box AP: 39.8
  174. - Task: Instance Segmentation
  175. Dataset: COCO
  176. Metrics:
  177. mask AP: 36.0
  178. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w18_2x_coco/mask_rcnn_hrnetv2p_w18_2x_coco_20200212-b3c825b1.pth
  179. - Name: mask_rcnn_hrnetv2p_w32_1x_coco
  180. In Collection: HRNet
  181. Config: configs/hrnet/mask_rcnn_hrnetv2p_w32_1x_coco.py
  182. Metadata:
  183. Training Memory (GB): 9.4
  184. inference time (ms/im):
  185. - value: 88.5
  186. hardware: V100
  187. backend: PyTorch
  188. batch size: 1
  189. mode: FP32
  190. resolution: (800, 1333)
  191. Epochs: 12
  192. Results:
  193. - Task: Object Detection
  194. Dataset: COCO
  195. Metrics:
  196. box AP: 41.2
  197. - Task: Instance Segmentation
  198. Dataset: COCO
  199. Metrics:
  200. mask AP: 37.1
  201. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w32_1x_coco/mask_rcnn_hrnetv2p_w32_1x_coco_20200207-b29f616e.pth
  202. - Name: mask_rcnn_hrnetv2p_w32_2x_coco
  203. In Collection: HRNet
  204. Config: configs/hrnet/mask_rcnn_hrnetv2p_w32_2x_coco.py
  205. Metadata:
  206. Training Memory (GB): 9.4
  207. inference time (ms/im):
  208. - value: 88.5
  209. hardware: V100
  210. backend: PyTorch
  211. batch size: 1
  212. mode: FP32
  213. resolution: (800, 1333)
  214. Epochs: 24
  215. Results:
  216. - Task: Object Detection
  217. Dataset: COCO
  218. Metrics:
  219. box AP: 42.5
  220. - Task: Instance Segmentation
  221. Dataset: COCO
  222. Metrics:
  223. mask AP: 37.8
  224. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w32_2x_coco/mask_rcnn_hrnetv2p_w32_2x_coco_20200213-45b75b4d.pth
  225. - Name: mask_rcnn_hrnetv2p_w40_1x_coco
  226. In Collection: HRNet
  227. Config: configs/hrnet/mask_rcnn_hrnetv2p_w40_1x_coco.py
  228. Metadata:
  229. Training Memory (GB): 10.9
  230. Epochs: 12
  231. Results:
  232. - Task: Object Detection
  233. Dataset: COCO
  234. Metrics:
  235. box AP: 42.1
  236. - Task: Instance Segmentation
  237. Dataset: COCO
  238. Metrics:
  239. mask AP: 37.5
  240. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w40_1x_coco/mask_rcnn_hrnetv2p_w40_1x_coco_20200511_015646-66738b35.pth
  241. - Name: mask_rcnn_hrnetv2p_w40_2x_coco
  242. In Collection: HRNet
  243. Config: configs/hrnet/mask_rcnn_hrnetv2p_w40_2x_coco.py
  244. Metadata:
  245. Training Memory (GB): 10.9
  246. Epochs: 24
  247. Results:
  248. - Task: Object Detection
  249. Dataset: COCO
  250. Metrics:
  251. box AP: 42.8
  252. - Task: Instance Segmentation
  253. Dataset: COCO
  254. Metrics:
  255. mask AP: 38.2
  256. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w40_2x_coco/mask_rcnn_hrnetv2p_w40_2x_coco_20200512_163732-aed5e4ab.pth
  257. - Name: cascade_rcnn_hrnetv2p_w18_20e_coco
  258. In Collection: HRNet
  259. Config: configs/hrnet/cascade_rcnn_hrnetv2p_w18_20e_coco.py
  260. Metadata:
  261. Training Memory (GB): 7.0
  262. inference time (ms/im):
  263. - value: 90.91
  264. hardware: V100
  265. backend: PyTorch
  266. batch size: 1
  267. mode: FP32
  268. resolution: (800, 1333)
  269. Epochs: 20
  270. Results:
  271. - Task: Object Detection
  272. Dataset: COCO
  273. Metrics:
  274. box AP: 41.2
  275. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w18_20e_coco/cascade_rcnn_hrnetv2p_w18_20e_coco_20200210-434be9d7.pth
  276. - Name: cascade_rcnn_hrnetv2p_w32_20e_coco
  277. In Collection: HRNet
  278. Config: configs/hrnet/cascade_rcnn_hrnetv2p_w32_20e_coco.py
  279. Metadata:
  280. Training Memory (GB): 9.4
  281. inference time (ms/im):
  282. - value: 90.91
  283. hardware: V100
  284. backend: PyTorch
  285. batch size: 1
  286. mode: FP32
  287. resolution: (800, 1333)
  288. Epochs: 20
  289. Results:
  290. - Task: Object Detection
  291. Dataset: COCO
  292. Metrics:
  293. box AP: 43.3
  294. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w32_20e_coco/cascade_rcnn_hrnetv2p_w32_20e_coco_20200208-928455a4.pth
  295. - Name: cascade_rcnn_hrnetv2p_w40_20e_coco
  296. In Collection: HRNet
  297. Config: configs/hrnet/cascade_rcnn_hrnetv2p_w40_20e_coco.py
  298. Metadata:
  299. Training Memory (GB): 10.8
  300. Epochs: 20
  301. Results:
  302. - Task: Object Detection
  303. Dataset: COCO
  304. Metrics:
  305. box AP: 43.8
  306. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w40_20e_coco/cascade_rcnn_hrnetv2p_w40_20e_coco_20200512_161112-75e47b04.pth
  307. - Name: cascade_mask_rcnn_hrnetv2p_w18_20e_coco
  308. In Collection: HRNet
  309. Config: configs/hrnet/cascade_mask_rcnn_hrnetv2p_w18_20e_coco.py
  310. Metadata:
  311. Training Memory (GB): 8.5
  312. inference time (ms/im):
  313. - value: 117.65
  314. hardware: V100
  315. backend: PyTorch
  316. batch size: 1
  317. mode: FP32
  318. resolution: (800, 1333)
  319. Epochs: 20
  320. Results:
  321. - Task: Object Detection
  322. Dataset: COCO
  323. Metrics:
  324. box AP: 41.6
  325. - Task: Instance Segmentation
  326. Dataset: COCO
  327. Metrics:
  328. mask AP: 36.4
  329. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w18_20e_coco/cascade_mask_rcnn_hrnetv2p_w18_20e_coco_20200210-b543cd2b.pth
  330. - Name: cascade_mask_rcnn_hrnetv2p_w32_20e_coco
  331. In Collection: HRNet
  332. Config: configs/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e_coco.py
  333. Metadata:
  334. inference time (ms/im):
  335. - value: 120.48
  336. hardware: V100
  337. backend: PyTorch
  338. batch size: 1
  339. mode: FP32
  340. resolution: (800, 1333)
  341. Epochs: 20
  342. Results:
  343. - Task: Object Detection
  344. Dataset: COCO
  345. Metrics:
  346. box AP: 44.3
  347. - Task: Instance Segmentation
  348. Dataset: COCO
  349. Metrics:
  350. mask AP: 38.6
  351. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e_coco/cascade_mask_rcnn_hrnetv2p_w32_20e_coco_20200512_154043-39d9cf7b.pth
  352. - Name: cascade_mask_rcnn_hrnetv2p_w40_20e_coco
  353. In Collection: HRNet
  354. Config: configs/hrnet/cascade_mask_rcnn_hrnetv2p_w40_20e_coco.py
  355. Metadata:
  356. Training Memory (GB): 12.5
  357. Epochs: 20
  358. Results:
  359. - Task: Object Detection
  360. Dataset: COCO
  361. Metrics:
  362. box AP: 45.1
  363. - Task: Instance Segmentation
  364. Dataset: COCO
  365. Metrics:
  366. mask AP: 39.3
  367. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w40_20e_coco/cascade_mask_rcnn_hrnetv2p_w40_20e_coco_20200527_204922-969c4610.pth
  368. - Name: htc_hrnetv2p_w18_20e_coco
  369. In Collection: HRNet
  370. Config: configs/hrnet/htc_hrnetv2p_w18_20e_coco.py
  371. Metadata:
  372. Training Memory (GB): 10.8
  373. inference time (ms/im):
  374. - value: 212.77
  375. hardware: V100
  376. backend: PyTorch
  377. batch size: 1
  378. mode: FP32
  379. resolution: (800, 1333)
  380. Epochs: 20
  381. Results:
  382. - Task: Object Detection
  383. Dataset: COCO
  384. Metrics:
  385. box AP: 42.8
  386. - Task: Instance Segmentation
  387. Dataset: COCO
  388. Metrics:
  389. mask AP: 37.9
  390. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w18_20e_coco/htc_hrnetv2p_w18_20e_coco_20200210-b266988c.pth
  391. - Name: htc_hrnetv2p_w32_20e_coco
  392. In Collection: HRNet
  393. Config: configs/hrnet/htc_hrnetv2p_w32_20e_coco.py
  394. Metadata:
  395. Training Memory (GB): 13.1
  396. inference time (ms/im):
  397. - value: 204.08
  398. hardware: V100
  399. backend: PyTorch
  400. batch size: 1
  401. mode: FP32
  402. resolution: (800, 1333)
  403. Epochs: 20
  404. Results:
  405. - Task: Object Detection
  406. Dataset: COCO
  407. Metrics:
  408. box AP: 45.4
  409. - Task: Instance Segmentation
  410. Dataset: COCO
  411. Metrics:
  412. mask AP: 39.9
  413. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w32_20e_coco/htc_hrnetv2p_w32_20e_coco_20200207-7639fa12.pth
  414. - Name: htc_hrnetv2p_w40_20e_coco
  415. In Collection: HRNet
  416. Config: configs/hrnet/htc_hrnetv2p_w40_20e_coco.py
  417. Metadata:
  418. Training Memory (GB): 14.6
  419. Epochs: 20
  420. Results:
  421. - Task: Object Detection
  422. Dataset: COCO
  423. Metrics:
  424. box AP: 46.4
  425. - Task: Instance Segmentation
  426. Dataset: COCO
  427. Metrics:
  428. mask AP: 40.8
  429. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w40_20e_coco/htc_hrnetv2p_w40_20e_coco_20200529_183411-417c4d5b.pth
  430. - Name: fcos_hrnetv2p_w18_gn-head_4x4_1x_coco
  431. In Collection: HRNet
  432. Config: configs/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco.py
  433. Metadata:
  434. Training Resources: 4x V100 GPUs
  435. Batch Size: 16
  436. Training Memory (GB): 13.0
  437. inference time (ms/im):
  438. - value: 77.52
  439. hardware: V100
  440. backend: PyTorch
  441. batch size: 1
  442. mode: FP32
  443. resolution: (800, 1333)
  444. Epochs: 12
  445. Results:
  446. - Task: Object Detection
  447. Dataset: COCO
  448. Metrics:
  449. box AP: 35.3
  450. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco_20201212_100710-4ad151de.pth
  451. - Name: fcos_hrnetv2p_w18_gn-head_4x4_2x_coco
  452. In Collection: HRNet
  453. Config: configs/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco.py
  454. Metadata:
  455. Training Resources: 4x V100 GPUs
  456. Batch Size: 16
  457. Training Memory (GB): 13.0
  458. inference time (ms/im):
  459. - value: 77.52
  460. hardware: V100
  461. backend: PyTorch
  462. batch size: 1
  463. mode: FP32
  464. resolution: (800, 1333)
  465. Epochs: 24
  466. Results:
  467. - Task: Object Detection
  468. Dataset: COCO
  469. Metrics:
  470. box AP: 38.2
  471. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco_20201212_101110-5c575fa5.pth
  472. - Name: fcos_hrnetv2p_w32_gn-head_4x4_1x_coco
  473. In Collection: HRNet
  474. Config: configs/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco.py
  475. Metadata:
  476. Training Resources: 4x V100 GPUs
  477. Batch Size: 16
  478. Training Memory (GB): 17.5
  479. inference time (ms/im):
  480. - value: 77.52
  481. hardware: V100
  482. backend: PyTorch
  483. batch size: 1
  484. mode: FP32
  485. resolution: (800, 1333)
  486. Epochs: 12
  487. Results:
  488. - Task: Object Detection
  489. Dataset: COCO
  490. Metrics:
  491. box AP: 39.5
  492. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco_20201211_134730-cb8055c0.pth
  493. - Name: fcos_hrnetv2p_w32_gn-head_4x4_2x_coco
  494. In Collection: HRNet
  495. Config: configs/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco.py
  496. Metadata:
  497. Training Resources: 4x V100 GPUs
  498. Batch Size: 16
  499. Training Memory (GB): 17.5
  500. inference time (ms/im):
  501. - value: 77.52
  502. hardware: V100
  503. backend: PyTorch
  504. batch size: 1
  505. mode: FP32
  506. resolution: (800, 1333)
  507. Epochs: 24
  508. Results:
  509. - Task: Object Detection
  510. Dataset: COCO
  511. Metrics:
  512. box AP: 40.8
  513. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco_20201212_112133-77b6b9bb.pth
  514. - Name: fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco
  515. In Collection: HRNet
  516. Config: configs/hrnet/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco.py
  517. Metadata:
  518. Training Resources: 4x V100 GPUs
  519. Batch Size: 16
  520. Training Memory (GB): 13.0
  521. inference time (ms/im):
  522. - value: 77.52
  523. hardware: V100
  524. backend: PyTorch
  525. batch size: 1
  526. mode: FP32
  527. resolution: (800, 1333)
  528. Epochs: 24
  529. Results:
  530. - Task: Object Detection
  531. Dataset: COCO
  532. Metrics:
  533. box AP: 38.3
  534. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco_20201212_111651-441e9d9f.pth
  535. - Name: fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco
  536. In Collection: HRNet
  537. Config: configs/hrnet/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco.py
  538. Metadata:
  539. Training Resources: 4x V100 GPUs
  540. Batch Size: 16
  541. Training Memory (GB): 17.5
  542. inference time (ms/im):
  543. - value: 80.65
  544. hardware: V100
  545. backend: PyTorch
  546. batch size: 1
  547. mode: FP32
  548. resolution: (800, 1333)
  549. Epochs: 24
  550. Results:
  551. - Task: Object Detection
  552. Dataset: COCO
  553. Metrics:
  554. box AP: 41.9
  555. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco_20201212_090846-b6f2b49f.pth
  556. - Name: fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco
  557. In Collection: HRNet
  558. Config: configs/hrnet/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco.py
  559. Metadata:
  560. Training Resources: 4x V100 GPUs
  561. Batch Size: 16
  562. Training Memory (GB): 20.3
  563. inference time (ms/im):
  564. - value: 92.59
  565. hardware: V100
  566. backend: PyTorch
  567. batch size: 1
  568. mode: FP32
  569. resolution: (800, 1333)
  570. Epochs: 24
  571. Results:
  572. - Task: Object Detection
  573. Dataset: COCO
  574. Metrics:
  575. box AP: 42.7
  576. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco_20201212_124752-f22d2ce5.pth

No Description

Contributors (3)