You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

gfl_r50_fpn_1x_coco.py 1.7 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657
  1. _base_ = [
  2. '../_base_/datasets/coco_detection.py',
  3. '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
  4. ]
  5. model = dict(
  6. type='GFL',
  7. backbone=dict(
  8. type='ResNet',
  9. depth=50,
  10. num_stages=4,
  11. out_indices=(0, 1, 2, 3),
  12. frozen_stages=1,
  13. norm_cfg=dict(type='BN', requires_grad=True),
  14. norm_eval=True,
  15. style='pytorch',
  16. init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
  17. neck=dict(
  18. type='FPN',
  19. in_channels=[256, 512, 1024, 2048],
  20. out_channels=256,
  21. start_level=1,
  22. add_extra_convs='on_output',
  23. num_outs=5),
  24. bbox_head=dict(
  25. type='GFLHead',
  26. num_classes=80,
  27. in_channels=256,
  28. stacked_convs=4,
  29. feat_channels=256,
  30. anchor_generator=dict(
  31. type='AnchorGenerator',
  32. ratios=[1.0],
  33. octave_base_scale=8,
  34. scales_per_octave=1,
  35. strides=[8, 16, 32, 64, 128]),
  36. loss_cls=dict(
  37. type='QualityFocalLoss',
  38. use_sigmoid=True,
  39. beta=2.0,
  40. loss_weight=1.0),
  41. loss_dfl=dict(type='DistributionFocalLoss', loss_weight=0.25),
  42. reg_max=16,
  43. loss_bbox=dict(type='GIoULoss', loss_weight=2.0)),
  44. # training and testing settings
  45. train_cfg=dict(
  46. assigner=dict(type='ATSSAssigner', topk=9),
  47. allowed_border=-1,
  48. pos_weight=-1,
  49. debug=False),
  50. test_cfg=dict(
  51. nms_pre=1000,
  52. min_bbox_size=0,
  53. score_thr=0.05,
  54. nms=dict(type='nms', iou_threshold=0.6),
  55. max_per_img=100))
  56. # optimizer
  57. optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)

No Description

Contributors (3)