You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 3.7 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445
  1. # Feature Selective Anchor-Free Module for Single-Shot Object Detection
  2. <!-- [ALGORITHM] -->
  3. FSAF is an anchor-free method published in CVPR2019 ([https://arxiv.org/pdf/1903.00621.pdf](https://arxiv.org/pdf/1903.00621.pdf)).
  4. Actually it is equivalent to the anchor-based method with only one anchor at each feature map position in each FPN level.
  5. And this is how we implemented it.
  6. Only the anchor-free branch is released for its better compatibility with the current framework and less computational budget.
  7. In the original paper, feature maps within the central 0.2-0.5 area of a gt box are tagged as ignored. However,
  8. it is empirically found that a hard threshold (0.2-0.2) gives a further gain on the performance. (see the table below)
  9. ## Main Results
  10. ### Results on R50/R101/X101-FPN
  11. | Backbone | ignore range | ms-train| Lr schd |Train Mem (GB)| Train time (s/iter) | Inf time (fps) | box AP | Config | Download |
  12. |:----------:| :-------: |:-------:|:-------:|:------------:|:---------------:|:--------------:|:-------------:|:------:|:--------:|
  13. | R-50 | 0.2-0.5 | N | 1x | 3.15 | 0.43 | 12.3 | 36.0 (35.9) | | [model](https://download.openmmlab.com/mmdetection/v2.0/fsaf/fsaf_pscale0.2_nscale0.5_r50_fpn_1x_coco/fsaf_pscale0.2_nscale0.5_r50_fpn_1x_coco_20200715-b555b0e0.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/fsaf/fsaf_pscale0.2_nscale0.5_r50_fpn_1x_coco/fsaf_pscale0.2_nscale0.5_r50_fpn_1x_coco_20200715_094657.log.json) |
  14. | R-50 | 0.2-0.2 | N | 1x | 3.15 | 0.43 | 13.0 | 37.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fsaf/fsaf_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/fsaf/fsaf_r50_fpn_1x_coco/fsaf_r50_fpn_1x_coco-94ccc51f.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/fsaf/fsaf_r50_fpn_1x_coco/fsaf_r50_fpn_1x_coco_20200428_072327.log.json)|
  15. | R-101 | 0.2-0.2 | N | 1x | 5.08 | 0.58 | 10.8 | 39.3 (37.9) | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fsaf/fsaf_r101_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/fsaf/fsaf_r101_fpn_1x_coco/fsaf_r101_fpn_1x_coco-9e71098f.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/fsaf/fsaf_r101_fpn_1x_coco/fsaf_r101_fpn_1x_coco_20200428_160348.log.json)|
  16. | X-101 | 0.2-0.2 | N | 1x | 9.38 | 1.23 | 5.6 | 42.4 (41.0) | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fsaf/fsaf_x101_64x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/fsaf/fsaf_x101_64x4d_fpn_1x_coco/fsaf_x101_64x4d_fpn_1x_coco-e3f6e6fd.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/fsaf/fsaf_x101_64x4d_fpn_1x_coco/fsaf_x101_64x4d_fpn_1x_coco_20200428_160424.log.json)|
  17. **Notes:**
  18. - *1x means the model is trained for 12 epochs.*
  19. - *AP values in the brackets represent those reported in the original paper.*
  20. - *All results are obtained with a single model and single-scale test.*
  21. - *X-101 backbone represents ResNext-101-64x4d.*
  22. - *All pretrained backbones use pytorch style.*
  23. - *All models are trained on 8 Titan-XP gpus and tested on a single gpu.*
  24. ## Citations
  25. BibTeX reference is as follows.
  26. ```latex
  27. @inproceedings{zhu2019feature,
  28. title={Feature Selective Anchor-Free Module for Single-Shot Object Detection},
  29. author={Zhu, Chenchen and He, Yihui and Savvides, Marios},
  30. booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  31. pages={840--849},
  32. year={2019}
  33. }
  34. ```

No Description

Contributors (3)