You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

metafile.yml 3.6 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113
  1. Collections:
  2. - Name: FP16
  3. Metadata:
  4. Training Data: COCO
  5. Training Techniques:
  6. - Mixed Precision Training
  7. Training Resources: 8x V100 GPUs
  8. Paper:
  9. URL: https://arxiv.org/abs/1710.03740
  10. Title: 'Mixed Precision Training'
  11. README: configs/fp16/README.md
  12. Code:
  13. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/core/fp16/hooks.py#L11
  14. Version: v2.0.0
  15. Models:
  16. - Name: faster_rcnn_r50_fpn_fp16_1x_coco
  17. In Collection: FP16
  18. Config: configs/fp16/faster_rcnn_r50_fpn_fp16_1x_coco.py
  19. Metadata:
  20. Training Memory (GB): 3.4
  21. inference time (ms/im):
  22. - value: 34.72
  23. hardware: V100
  24. backend: PyTorch
  25. batch size: 1
  26. mode: FP16
  27. resolution: (800, 1333)
  28. Epochs: 12
  29. Results:
  30. - Task: Object Detection
  31. Dataset: COCO
  32. Metrics:
  33. box AP: 37.5
  34. Weights: https://download.openmmlab.com/mmdetection/v2.0/fp16/faster_rcnn_r50_fpn_fp16_1x_coco/faster_rcnn_r50_fpn_fp16_1x_coco_20200204-d4dc1471.pth
  35. - Name: mask_rcnn_r50_fpn_fp16_1x_coco
  36. In Collection: FP16
  37. Config: configs/fp16/mask_rcnn_r50_fpn_fp16_1x_coco.py
  38. Metadata:
  39. Training Memory (GB): 3.6
  40. inference time (ms/im):
  41. - value: 41.49
  42. hardware: V100
  43. backend: PyTorch
  44. batch size: 1
  45. mode: FP16
  46. resolution: (800, 1333)
  47. Epochs: 12
  48. Results:
  49. - Task: Object Detection
  50. Dataset: COCO
  51. Metrics:
  52. box AP: 38.1
  53. - Task: Instance Segmentation
  54. Dataset: COCO
  55. Metrics:
  56. mask AP: 34.7
  57. Weights: https://download.openmmlab.com/mmdetection/v2.0/fp16/mask_rcnn_r50_fpn_fp16_1x_coco/mask_rcnn_r50_fpn_fp16_1x_coco_20200205-59faf7e4.pth
  58. - Name: mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco
  59. In Collection: FP16
  60. Config: configs/fp16/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco.py
  61. Metadata:
  62. Training Memory (GB): 3.0
  63. Epochs: 12
  64. Results:
  65. - Task: Object Detection
  66. Dataset: COCO
  67. Metrics:
  68. box AP: 41.9
  69. - Task: Instance Segmentation
  70. Dataset: COCO
  71. Metrics:
  72. mask AP: 37.5
  73. Weights: https://download.openmmlab.com/mmdetection/v2.0/fp16/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco_20210520_180247-c06429d2.pth
  74. - Name: mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco
  75. In Collection: FP16
  76. Config: configs/fp16/mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco.py
  77. Metadata:
  78. Training Memory (GB): 3.1
  79. Epochs: 12
  80. Results:
  81. - Task: Object Detection
  82. Dataset: COCO
  83. Metrics:
  84. box AP: 42.0
  85. - Task: Instance Segmentation
  86. Dataset: COCO
  87. Metrics:
  88. mask AP: 37.6
  89. Weights: https://download.openmmlab.com/mmdetection/v2.0/fp16/mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco_20210520_180434-cf8fefa5.pth
  90. - Name: retinanet_r50_fpn_fp16_1x_coco
  91. In Collection: FP16
  92. Config: configs/fp16/retinanet_r50_fpn_fp16_1x_coco.py
  93. Metadata:
  94. Training Memory (GB): 2.8
  95. inference time (ms/im):
  96. - value: 31.65
  97. hardware: V100
  98. backend: PyTorch
  99. batch size: 1
  100. mode: FP16
  101. resolution: (800, 1333)
  102. Epochs: 12
  103. Results:
  104. - Task: Object Detection
  105. Dataset: COCO
  106. Metrics:
  107. box AP: 36.4
  108. Weights: https://download.openmmlab.com/mmdetection/v2.0/fp16/retinanet_r50_fpn_fp16_1x_coco/retinanet_r50_fpn_fp16_1x_coco_20200702-0dbfb212.pth

No Description

Contributors (3)