You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

fovea_r50_fpn_4x4_1x_coco.py 1.6 kB

2 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152
  1. _base_ = [
  2. '../_base_/datasets/coco_detection.py',
  3. '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
  4. ]
  5. # model settings
  6. model = dict(
  7. type='FOVEA',
  8. backbone=dict(
  9. type='ResNet',
  10. depth=50,
  11. num_stages=4,
  12. out_indices=(0, 1, 2, 3),
  13. frozen_stages=1,
  14. norm_cfg=dict(type='BN', requires_grad=True),
  15. norm_eval=True,
  16. style='pytorch',
  17. init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
  18. neck=dict(
  19. type='FPN',
  20. in_channels=[256, 512, 1024, 2048],
  21. out_channels=256,
  22. start_level=1,
  23. num_outs=5,
  24. add_extra_convs='on_input'),
  25. bbox_head=dict(
  26. type='FoveaHead',
  27. num_classes=80,
  28. in_channels=256,
  29. stacked_convs=4,
  30. feat_channels=256,
  31. strides=[8, 16, 32, 64, 128],
  32. base_edge_list=[16, 32, 64, 128, 256],
  33. scale_ranges=((1, 64), (32, 128), (64, 256), (128, 512), (256, 2048)),
  34. sigma=0.4,
  35. with_deform=False,
  36. loss_cls=dict(
  37. type='FocalLoss',
  38. use_sigmoid=True,
  39. gamma=1.50,
  40. alpha=0.4,
  41. loss_weight=1.0),
  42. loss_bbox=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0)),
  43. # training and testing settings
  44. train_cfg=dict(),
  45. test_cfg=dict(
  46. nms_pre=1000,
  47. score_thr=0.05,
  48. nms=dict(type='nms', iou_threshold=0.5),
  49. max_per_img=100))
  50. data = dict(samples_per_gpu=4, workers_per_gpu=4)
  51. # optimizer
  52. optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)

No Description

Contributors (3)